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Abstract

Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape
of the HRF varies across brain regions and subjects. �is suggests that a data-driven estimation of this function could lead to
more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable
results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF by means
of a rank constraint, forcing the estimated HRF to be equal across events or experimental conditions, yet permi�ing it to di�er
across voxels. Model estimation leads to an optimization problem that we propose to solve with an e�cient quasi-Newton method,
exploiting fast gradient computations. �is model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the se�ing
of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We
compare 10 di�erent HRF modeling methods in terms of encoding and decoding score on two di�erent datasets. Our results show
that the R1-GLM model outperforms competing methods in both encoding and decoding se�ings, positioning it as an a�ractive
method both from the points of view of accuracy and computational e�ciency.

Keywords: Functional MRI (fMRI), Hemodynamic response function (HRF), machine learning, optimization, BOLD, Finite
inpulse response (FIR), decoding, encoding

1. Introduction

�e use of machine learning techniques to predict the cog-
nitive state of a subject from their functional MRI (fMRI)
data recorded during task performance has become a popu-
lar analysis approach for neuroimaging studies over the last
decade (Cox and Savoy, 2003; Haynes and Rees, 2006). It is
now commonly referred to as brain reading or decoding. In this
se�ing, the BOLD signal is used to predict the task or stimulus
that the subject was performing. Although it is possible to per-
form decoding directly on raw BOLD signal (Mourão Miranda
et al., 2007; Miyawaki et al., 2008), the common approach in
fast event-related designs consists in extracting the activation
coe�cients (beta-maps) from the BOLD signal to perform the
decoding analysis on these estimates. Similarly, in the voxel-
based encoding models (Kay et al., 2008; Naselaris et al., 2011),
the activation coe�cients are extracted from the BOLD sig-
nal, this time to learn a model to predict the BOLD response
in a given voxel, based on a given representation of the stim-
uli. In addition, a third approach, known as representational
similarity analysis or RSA (Kriegeskorte et al., 2008) takes as
input the activation coe�cients. In this case a comparison is
made between the similarity observed in the activation coe�-
cients, quanti�ed by a correlation measure, and the similarity
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between the stimuli, quanti�ed by a similarity measure de�ned
from the experimental se�ing.

�ese activation coe�cients are computed by means of
the General Linear Model (GLM) (Friston et al., 1995).
While this approach has been successfully used in a wide
range of studies, it does su�er from limitations (Poline and
Bre�, 2012). For instance, the GLM commonly relies on
a data-independent canonical form of the hemodynamic re-
sponse function (HRF) to estimate the activation coe�cient.
However it is known (Handwerker et al., 2004; Badillo et al.,
2013b) that the shape of this response function can vary sub-
stantially across subjects and brain regions. �is suggests that
an adaptive modeling of this response function should improve
the accuracy of subsequent analysis.

To overcome the aforementioned limitation, Finite Impulse
Response (FIR) models have been proposed within the GLM
framework (Dale, 1999; Glover, 1999). �ese models do not
assume any particular shape for the HRF and amount to es-
timating a large number of parameters in order to identify it.
While the FIR-based modeling makes it possible to estimate
the activation coe�cient and the HRF simultaneously, the in-
creased �exibility has a cost. �e estimator is less robust and
prone to over��ing, i.e. to generalize badly to unseen data. In
general, FIR models are most appropriate for studies focused
on the characterization of the shape of the hemodynamic re-
sponse, and not for studies that are primarily focused on de-
tecting activation (Poldrack et al., 2011, Chapter 5).

Several strategies aiming at reducing the number of degrees
of freedom of the FIR model - and thus at limiting the risk of
over��ing - have been proposed. One possibility is to con-
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strain the shape of the HRF to be a linear combination of a
small number of basis functions. A common choice of basis
is formed by three elements consisting of a reference HRF as
well as its time and dispersion derivatives (Friston et al., 1998),
although it is also possible to compute a basis set that spans a
desired function space (Woolrich et al., 2004). More generally,
one can also de�ne a parametric model of the HRF and esti-
mate the parameters that best �t this function (Lindquist and
Wager, 2007). However, in this case the estimated HRF may no
longer be a linear function of the input parameters.

Sensitivity to noise and over��ing can also be reduced
through regularization. For example, temporal regulariza-
tion has been used in the smooth FIR (Gou�e et al., 2000;
Ciuciu et al., 2003; Casanova et al., 2008) to favor solutions
with small second order time derivative. �ese approaches
require the se�ing of one or several hyperparameters, at
the voxel or potentially at the parcel level (if several vox-
els in a pre-de�ned parcel are assumed to share some as-
pects of the HRF timecourse). Even if e�cient techniques
such as generalized cross-validation (Golub et al., 1979) can
be used to choose the regularization parameters, these meth-
ods are inherently more costly than basis-constrained meth-
ods. Basis-constrained methods also require se�ing the num-
ber of basis elements; however, this parameter is not continu-
ous (as in the case of regularized methods), and in practice only
few values are explored: for example the 3-element basis set
formed by a reference HRF plus derivatives and the FIR model.
�is paper focuses on basis-constrained regularization of the
HRF to avoid dealing with hyperparameter selection with the
goal of remaining computationally a�ractive. A di�erent ap-
proach to increase robustness of the estimates consists in link-
ing the estimated HRFs across a prede�ned brain parcel, taking
advantage of the spatially dependent nature of fMRI (Wang
et al., 2013). However, hemodynamically-informed parcella-
tions (Chaari et al., 2012; Badillo et al., 2013a) rely on the
computation of a large number of estimations at the voxel or
sub-parcel level. In this se�ing, the development of voxel-wise
estimation procedures is complementary to the development
of parcellation methods in that more robust estimation meth-
ods at the voxel level would naturally translate into more ro-
bust parcellation methods. In this paper we focus on voxel-
wise estimation methods.

We propose a method for the simultaneous estimation of
HRF and activation coe�cients based on low-rank modeling.
Within this model, and as in (Makni et al., 2008; Kay et al.,
2008; Vincent et al., 2010; Degras and Lindquist, 2014), the HRF
is constrained to be equal across the di�erent conditions, yet
permi�ing it to be di�erent across voxels. Unlike previous
works, we formulate this model as a constrained least squares
problem, where the vector of coe�cients is constrained to lie
within the space of rank one matrices. We formulate the model
within the framework of smooth optimization and use quasi-
Newton methods to �nd the vector of estimates. �is model
was brie�y presented in the conference paper (Pedregosa et al.,
2013). Here we provide more experimental validation and a
more detailed presentation of the method. We also added re-
sults using a GLM with separate designs (Mumford et al., 2012).

Ten alternative approaches are now compared on two publicly
available datasets. �e solver has also been signi�cantly im-
proved to scale to full brain data.

�e contributions of this paper are two-fold. First, we quan-
tify the importance of HRF estimation in encoding and de-
coding models. While the bene�t of data-driven estimates
of the HRF have already been reported in the case of decod-
ing (Turner et al., 2012) and encoding approaches (Vu et al.,
2011), we here provide a comprehensive comparison of mod-
els. Second, we evaluate a method calledGLMwith Rank-1 con-
straint (R1-GLM) that improves encoding and decoding scores
over state-of-the-art methods while remaining computation-
ally tractable on a full brain volume. We propose an e�cient
algorithm for this method and discuss practical issues such as
initialization. Finally, we provide access to an open source so�-
ware implementation of the methods discussed in this paper.

Notation: ‖ · ‖ and ‖ · ‖∞ denote the Euclidean and in�n-
ity norm for vectors. We use lowercase boldface le�er to de-
note vectors and uppercase boldface le�er to denote matrices.
I denotes the identity matrix, 1n denotes the vector of ones of
size n, ⊗ denotes the Kronecker product and vec(A) denotes
the concatenation of the columns of a matrix A into a single
column vector. A† denotes the Moore-Penrose pseudoinverse.
Given the vectors {a1, . . . , ak} with ai ∈ Rn for each 1 ≤ i ≤ k,
we will use the notation [a1, . . . , ak] ∈ Rn×k to represents the
columnwise concatenation of the k vectors into a matrix of size
n × k. We will use Matlab-style colon notation to denote slices
of an array, that is x(1 : k) will denote the �rst k elements of x.

2. Methods

In this section we describe di�erent methods for extracting
the HRF and activation coe�cients from BOLD signals. We
will refer to each di�erent stimulus as condition and we will call
trial a unique presentation of a given stimulus. We will denote
by k the total number of stimuli, y ∈ Rn the BOLD signal at a
single voxel and n the total number of images acquired.

2.1. �e General Linear Model
�e original GLM model (Friston et al., 1995) makes the as-

sumption that the hemodynamic response is a linear trans-
formation of the underlying neuronal signal. We de�ne the
n × k-matrix XGLM as the columnwise stacking of di�erent re-
gressors, each one de�ned as the convolution of a reference
HRF (Boynton et al., 1996; Glover, 1999) with the stimulus on-
sets for the given condition. In this work we used as reference
HRF the one provided by the so�ware SPM 8 (Friston et al.,
2011). Assuming additive white noise, n ≥ k and XGLM to be
full rank, the vector of estimates is given by β̂GLM = X†GLMy,
where β̂GLM is a vector of size k representing the amplitude of
each one of the conditions in a given voxel.

A popular modi�cation of this se�ing consists in extending
the GLM design matrix with the temporal and width deriva-
tives of the reference HRF. �is basis, formed by the reference
HRF and its derivatives with respect to time and width param-
eters, will be used throughout this work. We will refer to it as
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the 3HRF basis. In this case, each one of the basis elements is
convolved with the stimulus onsets of each condition, obtain-
ing a design matrix of size n × 3k. �is way, for each condi-
tion, we estimate the form of the HRF as a sum of basis func-
tions that correspond to the �rst order Taylor expansion of the
parametrization of the response function. Another basis set
that will be used is the Finite Impulse Response (FIR) set. �is
basis set spans the complete ambient vector space (of dimen-
sion corresponding to the length of the impulse response) and
it is thus a �exible model for capturing the HRF shape. It con-
sists of the canonical unit vectors (also known as stick func-
tion) for the given duration of the estimated HRF. Other basis
functions such as FMRIB’s Linear Optimal Basis Sets (Wool-
rich et al., 2004) are equally possible but were not considered
in this work.

More generally, one can extend this approach to any set of
basis functions. Given the matrix formed by the stacking of
d basis elements B = [b1,b2, . . . ,bd], the design matrix XB
is formed by successively stacking the regressors obtained by
convolving each of the basis elements with the stimulus onsets
of each condition. �is results in a matrix of size n × dk and
under the aforementioned conditions the vector of estimates is
given by β̂B = X†By. In this case, β̂B is no longer a vector of size
k: it has length k × d instead and can no longer be interpreted
as the amplitude of the activation. One possibility to recover
the trial-by-trial reponse amplitude is to select the parameters
from a single time point as done by some of the models consid-
ered in (Mumford et al., 2012), however this procedure assumes
that the peak BOLD response is located at that time point. An-
other possibility is to construct the estimated HRF and take
as amplitude coe�cient the peak amplitude of this estimated
HRF. �is is the approach that we have used in this paper.

2.2. GLM with rank constraint

In the basis-constrained GLM model, the HRF estimation
is performed independently for each condition. �is method
works reliably whenever the number of conditions is small,
but in experimental designs with a large number of conditions
it performs poorly due to the limited conditioning of the prob-
lem and the increasing variance of the estimates.

At a given voxel, it is expected that for similar stimuli the
estimated HRF are also similar (Henson et al., 2002). Hence,
a natural idea is to promote a common HRF across the var-
ious stimuli (given that they are su�ciently similar), which
should result in more robust estimates (Makni et al., 2008; Vin-
cent et al., 2010). In this work we consider a model in which
a common HRF is shared across the di�erent stimuli. Besides
the estimation of the HRF, a unique coe�cient is obtained per
column of our event matrix. �is amounts to the estimation
of k + d free parameters instead of k × d as in the standard
basis-constrained GLM se�ing.

�e novelty of our method stems from the observation that
the formulation of the GLM model with a common HRF across
conditions translates to a rank constraint on the vector of es-
timates. �is assumption amounts to enforcing the vector of
estimates to be of the form βB = [hβ1,hβ2, · · · ,hβk] for some

HRF h ∈ Rd and a vector of coe�cients β ∈ Rk. More com-
pactly, this can be wri�en as βB = vec(hβT ). �is can be seen
as a constraint on the vector of coe�cients to be the vector-
ization of a rank-one matrix, hence the name Rank-1 GLM (R1-
GLM).

In this model, the coe�cients have no longer a closed form
expressions, but can be estimated by minimizing the mean
squared error of a bilinear model. Given XB and y as before,
Z ∈ Rn×q a matrix of nuisance parameters such as dri� regres-
sors, we de�ne FR1(h,β,ω,XB, y,Z) = 1

2 ‖y − XB vec(hβT ) −
Zω‖2 to be the objective function to be minimized. �e opti-
mization problem reads:

ĥ, β̂, ω̂ = arg min
h,β,ω

FR1(h,β,ω,XB, y,Z)

subject to ‖Bh‖∞ = 1 and 〈Bh,href〉 > 0 ,
(1)

�e norm constraint is added to avoid the scale ambiguity be-
tween h andβ and the sign is chosen so that the estimated HRF
correlates positively with a given reference HRF href. Other-
wise the signs of the HRF and β can be simultaneously �ipped
without changing the value of the cost function. Within its
feasible set, the optimization problem is smooth and is convex
with respect to h, β andω, however it is not jointly convex in
variables h, β andω.

From a practical point of view this formulation has a number
of advantages. First, in contrast with the GLM without rank-1
constraint the estimated coe�cients are already factored into
the estimated HRF and the activation coe�cients. �at is, once
the estimation of the model parameters from Eq. (1) is ob-
tained, β̂ is a vector of size k and ĥ is a vector of size d that can
be both used in subsequent analysis, while in models without
rank-1 constraint only the vector of coe�cients (equivalent to
vec(hβT ) in rank-1 constrained models) of size k × d is esti-
mated. In the la�er case, the estimated HRF and the beta-maps
still have to be extracted from this vector by methods such as
normalization by the peak of the HRF, averaging or projecting
to the set of Rank-1 matrices.

Second, it is readily adapted to prediction on unseen trials.
While for classical (non rank-1 models) the HRF estimation is
performed per condition with no HRF associated with unseen
conditions, in this se�ing, because the estimated HRF is linked
and equal across conditions it is natural to use this estimate
on unseen conditions. �is se�ing occurs o�en in encoding
models where prediction on unseen trials is part of the cross-
validation procedure.

�is model can also be extended to a parametric HRF model.
�at is, given the hemodynamic response de�ned as a func-
tion h : Rd1 → Rd of some parameters α, we can formulate
the analogous model of Eq. (1) as an optimization over the pa-
rameters α and β with the design matrix XFIR given by the
convolution of the event matrix with the FIR basis:

α̂, β̂, ω̂ = arg min
α,β,ω

FR1(h(α),β,ω,XFIR, y,Z)

subject to ‖h(α)‖∞ = 1 and 〈h(α),href〉 > 0
(2)

In section 2.4 we will discuss optimization strategies for both
models.
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2.3. Extension to separate designs
An extension to the classical GLM that improves the estima-

tion with correlated designs was proposed in (Mumford et al.,
2012). In this se�ing, each voxel is modeled as a linear combi-
nation of two regressors in a design matrix XGLM. �e �rst one
is the regressor associated with a given condition and the sec-
ond one is the sum of all other regressors. �is results in k de-
sign matrices, one for each condition. �e estimate for a given
condition is given by the �rst element in the two-dimensional
array XSi

†y, where XSi is the design matrix for condition i. We
will denote this model GLM with separate designs (GLMS). It
has been reported to �nd a be�er estimate in rapid event de-
signs leading to a boost in accuracy for decoding tasks (Mum-
ford et al., 2012; Schoenmakers et al., 2013; Lei et al., 2013).

�is approach was further extended in (Turner et al., 2012) to
include FIR basis instead of the prede�ned canonical function.
Here we employ it in the more general se�ing of a prede�ned
basis set. Given a set of basis functions we construct the design
matrix for condition i as the columnwise concatenation of two
matrices X0

BSi and X1
BSi. X0

BSi is given by the columns associated
with the current condition in the GLM matrix and X1

BSi is the
sum of all other columns. In this case, the vector of estimates
is given by the �rst d vectors of X†BSiy. See (Turner et al., 2012)
for a more complete description of the matrices X0

BSi and X1
BSi.

It is possible to use the same rank-1 constraint as before in
the se�ing of separate designs, linking the HRF across condi-
tions. We will refer to this model as Rank-1 GLM with separate
designs (R1-GLMS). In this case the objective function has the
form FR1-S(h,β,ω, r,XB, y,Z) = 1

2
∑k

i ‖y−βiX0
BSih− riX1

BSih−
Zω‖2, where r ∈ Rd is a vector representing the activation of
all events except the event of interest and will not be used in
subsequent analyses. We can compute the vector of estimates
β̂ as the solution to the optimization problem

β̂, ω̂, ĥ, r̂ = arg min
h,β,ω,r

FR1-S(h,β,ω, r,XB, y,Z)

subject to ‖Bh‖∞ = 1 and 〈Bh,href〉 > 0
(3)

2.4. Optimization
For the estimation of rank-1 models on a full brain volume,

a model is estimate at each voxel separately. Since a typical
brain volume contains more than 40,000 voxels, the e�ciency
of the estimation at a single voxel is of great importance. In this
section we will detail an e�cient procedure based on quasi-
Newton methods for the estimation of R1-GLM and R1-GLMS
models on a given voxel.

One approach to minimize (1) is to alternate the minimiza-
tion with respect to the variables β, h andω. By recalling the
Kronecker product identities (Horn and Johnson, 1991, Chap-
ter 4.3), and using the identity vec(hβT ) = β⊗h we can rewrite
the objective function (1) to be minimized as:

1
2
‖y − XB(β ⊗ h) − Zω‖2 = (4)

1
2
‖y − XB(I ⊗ h)β − Zω‖2 = (5)

1
2
‖y − XB(β ⊗ I)h − Zω‖2 . (6)

Updating h, β or ω sequentially thus amounts to solving a
(constrained) least squares problem at each iteration. A simi-
lar procedure is detailed in (Degras and Lindquist, 2014). How-
ever, this approach requires computing the matrices XB(β⊗ I)
and XB(I ⊗ h) at each iteration, which are typically dense, re-
sulting in a high computational cost per iteration. Note also
that the optimization problem is not jointly convex in vari-
ables h,β,ω, therefore we cannot apply convergence guaran-
tees from convex analysis.

We rather propose a more e�cient approach by optimiz-
ing both variables jointly. We de�ne a global variable z
as the concatenation of (h,β,ω) into a single vector, z =
vec([h,β,ω]), and cast the problem as an optimization with
respect to this new variable. Generic solvers for numerical
optimization (Nocedal and Wright, 2006) can then be used.
�e solvers that we will consider take as input an objective
function and its gradient. In this case, the partial deriva-
tives with respect to variable z can be wri�en as ∂FR1/∂z =
vec([∂FR1/∂h, ∂FR1/∂β, ∂FR1/∂ω]), whose expression can be
easily derived using the aforementioned Kronecker product
identities:

∂FR1

∂h
= − (βT

⊗ I)XT (y − X vec(hβT ) − Zω)

∂FR1

∂β
= − (I ⊗ hT )XT (y − X vec(hβT ) − Zω)

∂FR1

∂ω
= − ZT (y − X vec(hβT ) − Zω)

If instead a parametric model of the HRF is used as in Eq. (2),
the equivalent partial derivatives can be easily computed by
the chain rule.

For the sake of e�ciency, it is essential to avoid evaluating
the Kronecker products naively, but rather reformulate them
using the above mentioned Kronecker identities. For example,
the matrix M = X(I⊗h) should not be computed explicitly but
should rather be stored as a linear operator such that when
applied to a vector β ∈ Rk it computes M(β) = X(β ⊗ h),
avoiding thus the explicit computation of I ⊗ h.

Similar equations can be derived for the rank-1 model
with separate designs of Eq. (3) (R1-GLMS), in which
case the variable z is de�ned as the concatenation of
(h,β,ω, r), i.e. z = vec([h,β,ω, r]). �e gradient of
FR1-S with respect to z can be computed as ∂FR1-S/∂z =
vec([∂FR1-S/∂h, ∂FR1-S/∂β, ∂FR1-S/∂ω, FR1-S/∂r]). �e partial
derivatives read:

∂F
∂h =

∑k
i −(X0

BSi
βi − X1

BSi
ri)T (y − βiX0

BSi
h − wiX1

BSi
h)

∂F
∂βi

= −(X0
BSi

h)T (y − βiX0
BSi

h − wiX1
BSi

h)
∂F
∂ωi

= −ZT (y − βiX0
BSi

h − wiX1
BSi

h)
∂F
∂ri

= −(X1
BSi

h)T (y − βiX0
BSi

h − wiX1
BSi

h)

A good initialization plays a crucial role in the convergence
of any iterative algorithm. Furthermore, for non-convex prob-
lems a good initialization prevents the algorithm from con-
verging to undesired local minima. We have used as initializa-
tion for the R1-GLM and R1-GLMS models the solution given
by the GLM with separate designs (GLMS). Since the GLM with
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separate designs scales linearly in the number of voxels, this
signi�cantly reduces computation time whenever an impor-
tant number of voxels is considered.

Whenever the design matrix XB has more rows than
columns (as is the case in both datasets we consider with B
the 3HRF basis), it is possible to �nd an orthogonal transforma-
tion that signi�cantly speeds up the computation of the Rank-1
model. Let Q,R be the “thin” QR decomposition of XB ∈ Rn×dk,
that is, QR = XB with Q ∈ Rn×dk an orthogonal matrix and
R ∈ Rdk×dk a triangular matrix. Because of the invariance of
the Euclidean norm to orthogonal transformations, the change
of variable XB ← QT XB, y ← QT y yields a Rank-1 model in
Eq. (1) with equivalent solutions. �is reduces the size of the
design matrix to a square triangular matrix of size dk × dk (in-
stead of n × dk) and reduces the explained variable y to a vec-
tor of size kd (instead of n). A�er this change of variable, the
convergence of the Rank-1 model is signi�cantly faster due to
the faster computation of the objective function and its partial
derivatives. We have observed that the total running time of
the algorithm can be reduced by 30% using this transformation.

Some numerical solvers such as L-BFGS-B (Liu and Nocedal,
1989) require the constraints to be given as box constraints.
While our original problem includes an equality constraint we
can easily adapt it to use convex box constraints instead. We
replace the equality constraint ‖Bh‖∞ = 1 by the convex in-
equality constraint ‖Bh‖∞ ≤ 1, which is equivalent to the box
constraint −1 ≤ (Bh)i ≤ 1 supported by the above solver.
However, this change of constraint allows solutions in which h
can be arbitrarily close to zero. To avoid such degenerate cases
we add the smooth term −‖B(:, 1)h1‖

2
2 to the cost function.

Since there is a free scale parameter between h andβ, this does
not bias the problem, but forces Bh to lie as far as possible from
the origin (thus saturating the box constraints). Once a descent
direction has been found by the L-BFGS-B method we perform
a line search procedure to determine the step length. �e line-
search procedure was implemented to satisfy the strong Wolfe
conditions (Nocedal and Wright, 2006). Finally, when the opti-
mization algorithm has converged to a stationary point, we
rescale the solution se�ing to ensure that the equality con-
straint. �is still leaves a sign ambiguity between the estimated
HRF and the associated beta-maps. To make these parameters
identi�able, the sign of the estimated HRF will be chosen so
that these correlate positively with the reference HRF.

We have compared several �rst-order (Conjugate Gradient),
quasi-Newton (L-BFGS) and Newton methods on this problems
and found that in general quasi-Newton methods performed
best in terms of computation time. In our implementation, we
adopt the L-BFGS-B as the default solver.

In Algorithm 1 we describe an algorithm based on L-BFGS
that can be used to optimize R1-GLM and R1-GLMS models (a
reference implementation for the Python language is described
in subsection So�ware). Variable r is only used for the R1-
GLMS method and its use is denoted within parenthesis, i.e.
(, r), so that for the R1-GLM it can simply be ignored.

�e full estimation of the R1-GLM model with 3HRF basis
for one subject of the dataset described in section Dataset 2:
decoding of potential gain levels (16 × 3 conditions, 720 time

Algorithm 1 Optimization of R1-GLM and R1-GLMS models
Input: Given initial points β0 ∈ Rk,h0 ∈ Rd,ω0 ∈ Rq (, r0 ∈

Rk), convergence tolerance ε > 0, inverse Hessian approx-
imation H0.

Output: βm,hm

1: (Optional): Compute the QR decomposition of XB, QR =
XB, and replace XB ← QT XB, y← QT y

2: Initialization. Set m← 0, z← vec([h0,β0,ω0(, r0)])
3: while ‖∇ f ‖ > ε do
4: Compute search direction. Set pm ←

−Hm∇ f (hm,βm,ωm(, rm)), where f is the objec-
tive function of the R1-GLM or R1-GLMS model. by
means of the L-BFGS algorithm.

5: Set zm+1 = zm+γmpm, where γm is computed from a line
search procedure subject to the box constraints ‖hm‖∞ ≤

1.
6: m← m + 1
7: end while
8: Extract R1-GLM(S) parameters from zm. Set hm ← zm(1 :

d),βm ← zm(d + 1 : m + d)
9: Normalize and set sign so that the estimated HRF is

positively correlated with a reference HRF: qm ←

‖hm‖∞sign(hT
mhref), hm ← hm/qm, βm ← βmqm

points, 41, 622 voxels) took 14 minutes in a 8-cores Intel Xeon
2.67GHz machine. �e total running time for the 17 subjects
was less than four hours.

2.5. So�ware

We provide a so�ware implementation of all the models dis-
cussed in this section in the freely available (BSD licensed)
pure-Python package hrf estimation 5.

3. Data description

With the aim of making the results in this paper easily re-
producible, we have chosen two freely available datasets to
validate our approach and to compare di�erent HRF modeling
techniques.

3.1. Dataset 1: encoding of visual information

�e �rst dataset we will consider is described in (Kay et al.,
2008; Naselaris et al., 2009; Kay et al., 2011). It contains BOLD
fMRI responses in human subjects viewing natural images. As
in (Kay et al., 2008), we performed prediction of BOLD signal
following the visual presentation of natural images and com-
pared it against the measured fMRI BOLD signal. As the proce-
dure consists of predicting the fMRI data from stimuli descrip-
tors, it is an encoding model. �is dataset is publicly available
from http://crcns.org

Two subjects viewed 1750 training images, each presented
twice, and 120 validation images, each presented 10 times,

5h�ps://pypi.python.org/pypi/hrf estimation
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while �xating a central cross. Images were �ashed 3 times per
second (200 ms on-o�-on-o�-on) for one second every 4 sec-
onds, leading to a rapid event-related design. �e data were ac-
quired in 5 scanner sessions on 5 di�erent days, each compris-
ing 5 runs of 70 training images –each image being presented
twice within the run– and 2 runs of validation images showing
12 images, 10 times each. �e images were recorded from the
occipital cortex at a spatial resolution of 2mm×2mm×2.5mm
and a temporal resolution of 1 second. Every brain volume for
each subject has been aligned to the �rst volume of the �rst run
of the �rst session for that subject. Across-session alignment
was performed manually. Additionally, data were temporally
interpolated to account for slice-timing di�erences. See (Kay
et al., 2008) for further preprocessing details.

We performed local detrending using a Savitzky-Golay �l-
ter (Savitzky and Golay, 1964) with a polynomial of degree
4 and a window length of 91 TR. �e activation coe�cients
(beta-map) and HRF were extracted from the training set by
means of the di�erent methods we would like to compare. �e
training set consisted of 80% of the original session (4 out of
5 runs). �is resulted in estimated coe�cients (beta-map) for
each of the 70 × 4 images in the training set.

We proceed to train the encoding model. �e stimuli are
handled as local image contrasts, that are represented by spa-
tially smoothed Gabor pyramid transform modulus with 2 ori-
entations and 4 scales. Ridge regression (regularization pa-
rameter chosen by Generalized Cross-Validation (Golub et al.,
1979)) was then used to learn a predictor of voxel activity on
the training set. By using this encoding model and the esti-
mated HRF it is possible to predict the BOLD signal for the 70
images in the test set (20 % of the original session). We em-
phasize that learning the HRF on the training set instead of
on the full dataset is necessary to avoid over��ing while as-
sessing the quality of the estimated HRF by any HRF-learning
method: otherwise, the estimation of the HRF may incorporate
speci�cities of the test set leading to arti�cially higher scores.

In a �rst step, we perform the image identi�cation task
from (Kay et al., 2008). From the training set we estimate the
activation coe�cients that will be used to compute the acti-
vation maps. We use an encoding model using Gabor �lters
that predicts the activation coe�cient from the training stim-
uli. From the stimuli in the validation set we predict the activa-
tion coe�cients that we then use to identify the correct image.
�e predicted image is the one yielding the highest correlation
with the measured activity. �is procedure mimics the one
presented in (Kay et al., 2008, Supplementary material).

In a second step, we report score as the Pearson correlation
between the measurements and the predicted BOLD signal on
le� out data. �e prediction of BOLD signal on the test set is
performed from conditions that were not present in the train
set. In order to do this, an HRF for these conditions is neces-
sary. As highlighted in the methods section, the construction
of an HRF for these conditions is ambiguous for non Rank-1
methods that perform HRF estimation on the di�erent stimuli.
In these cases we chose to use the mean HRF across conditions
as the HRF for unseen conditions. Finally, linear predictions on
the le� out fold were compared to the measured BOLD signals.

3.2. Dataset 2: decoding of potential gain levels
�e second dataset described in (Tom et al., 2007) is a gam-

bling task where each of the 17 subjects was asked to accept or
reject gambles that o�ered a 50/50 chance of gaining or losing
money. �e magnitude of the potential gain and loss was inde-
pendently varied across 16 levels between trials. Each gamble
has an amount of potential gains and potential losses that can
be used as class label. In this experiment, we only considered
gain levels. �is leads to the challenge of predicting or decod-
ing the gain level from brain images. �e dataset is publicly
available from http://openfmri.org under the name
mixed-gambles task dataset.

�e data preprocessing included slice timing, motion correc-
tion, coregistration to the anatomical images, tissue segmen-
tation, normalization to MNI space and was performed using
the SPM 8 so�ware through the Pypreprocess6 interface.

For all subjects three runs were recorded, each consisting
of 240 images with a repetition time (TR) of 2 seconds and a
stimulus presentation at every 4 seconds. In order to perform
HRF estimation on more data than what is available on a sin-
gle run, we performed the estimation on the three runs simul-
taneously. �is assumes HRF consistency across runs, which
was obtained by concatenating the data from the three runs
and creating a block-diagonal design matrix correspondingly
(each block is the design of one run).

A�er training a regression model on 90% of the data, we
predict the gain level on the remaining 10%. As a perfor-
mance measure we use Kendall tau rank correlation coe�-
cient (Kendall, 1938) between the true gain levels and the pre-
dicted levels, which is a measure for the orderings of the data.
We argue that this evaluation metric is be�er suited than a re-
gression loss for this task because of the discrete and ordered
nature of the labels. Also, this loss is less sensible to shrinkage
of the prediction that might occur when penalizing a regres-
sion model (Bekhti et al., 2014). �e Kendall tau coe�cient
always lies within the interval [−1, 1], with 1 being perfect
agreement between the two rankings and −1 perfect disagree-
ment. Chance level lies at zero. �is metric was previously pro-
posed for fMRI decoding with ordered labels in (Doyle et al.,
2013).

4. Results

In order to compare the di�erent methods discussed previ-
ously, we ran the same encoding and decoding studies while
varying the estimation method for the activation coe�cients
(beta-maps). �e methods we considered are standard GLM
(denoted GLM), GLM with separate designs (GLMS), Rank-1
GLM (R1-GLM) and Rank-1 GLM with separate designs (R1-
GLMS). For all these models we consider di�erent basis sets
for estimating the HRF: a set of three elements formed by the
reference HRF and its time and dispersion derivative, a FIR ba-
sis set (of size 20 in the �rst dataset and of size 10 in the second
dataset) formed by the canonical vectors and the single basis

6https://github.com/neurospin/pypreprocess
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set formed by the reference HRF (denoted “�xed HRF”), which
in this case is the HRF used by the SPM 8 so�ware.

It should be reminded that the focus of this study is not the
study of the HRF in itself (such as variability across subjects,
tasks or regions) but instead its possible impact on the accuracy
of encoding and decoding paradigms. For this reason we report
encoding and decoding scores but we do not investigate any of
the possible HRF variability factors.

4.1. Dataset 1: encoding of visual information

In the original study, 500 voxels were used to perform im-
age identi�cation. �ese voxels were selected as the voxels
with the highest correlation with the true BOLD signal on le�-
out data using a (classical) GLM with the reference HRF. �ese
voxels are therefore not the ones naturally bene�ting the most
from HRF estimation.

We �rst present the scores obtained in the image identi�ca-
tion task for di�erent variants of the GLM. �is can be seen
in Figure 1. �e displayed score is the count of correctly iden-
ti�ed images over the total number of images (chance level is
therefore at 1/120). �e identi�cation algorithm here only uses
the beta-maps obtained from the train and validation set. �is
makes the estimation of the HRF an intermediate result in this
model. However, we expect that a correct estimation of the
HRF directly translates into a be�er estimation of the activa-
tion coe�cients in the sense of being able to acheive higher
predictive accuracy. Our results are consistent with this hy-
pothesis and in this task the rank-one (R1) and glm-separate
(GLMS) models outperform the classical GLM model. �e ben-
e�ts range from 0.9% for R1-GLM in subject 2 to 8.2% for the
same method and subject 1. It is worth noticing that methods
with FIR basis obtain a higher score than methods using the
3HRF basis.

In order to test whether this increase is statistically signi�-
cant we performed the following statistical test. �e success
of recovering the correct image can be modeled as a binomial
distribution, with pA being be the probability of recovering
the correct image with method A and pB be the probability of
recovering the correct image with method B. We de�ne the
null hypothesis H0 as the statement that both probabilities are
equal, H0 : pA = pB, and the alternate hypothesis that both
probabilities and not equal, H1 : p1 , p2 (this test is sometimes
known as the binomial proportion test (Röhmel and Mans-
mann, 1999)). �e score test statistic for the one-tailed test is
T = (pA − pB)/

√
p(1 − p) 2

n , where p = (pA + pB)/2 and n is
the number of repetitions, in this case n = 120. �is statistic is
normally distributed for large n. �e p-value associated with
this statistical test when comparing every model (by order
of performance) with the model “GLM with with �xed HRF”
is (0.10, 0.10, 0.15, 0.19, 0.21, 0.26, 0.5, 0.5, 0.82, 0.81) for the
�rst subject and (0.18, 0.18, 0.25, 0.34, 0.34, 0.44, 0.5, 0.5, 0.86, 0.93)
for the second.

We will now use a di�erent metric for evaluating the perfor-
mance of the encoding model. �is metric is the Pearson corre-
lation between the BOLD predicted by the encoding model and
the true BOLD signal, averaged across voxels. We will compute
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Figure 1: Image identi�cation score (higher is be�er) on two di�erent subjects
from the �rst dataset. �e metric counts the number of correctly identi�ed
images over the total number of images (chance level is 1/120 ≈ 0.008). �is
metric is less sensitive to the shape of the HRF than the voxel-wise encoding
score. �e bene�ts range from 0.9% points to 8.2% points across R1-constrained
methods and subjects. �e highest score is achieved by a R1-GLM method with
a FIR basis set for subject 1 and by a R1-GLMS with FIR basis for subject 2.

the this metric on a le�-out session, which results in �ve scores
for each method, corresponding to each of the cross-validation
folds. Given two methods, a Wilcoxon signed-rank test can
be used on these cross-validation scores to assess whether the
score obtained by the two methods are signi�cantly di�erent.
�is way, irrespective of the variance across voxels, which is
inherent to the study, we can reliably assess the relative rank-
ing of the di�erent models. In Figure 2 we show the scores for
each method (averaged across sessions) and the p-value corre-
sponding the Wilcoxon test between a given method and the
previous one by order of performance.

We observed in Figure 2 that methods that learn the HRF
together with some sort of regularization (be it Rank-1 con-
straint or induced by separate designs) perform noticeably bet-
ter than methods that perform unconstrained HRF estimation,
highlighting the importance of a robust estimation of the HRF
as opposed to a free estimation as performed by the standard
GLM model with FIR basis. �is suggests that R1 and GLMS
methods permit including FIR basis sets while minimizing the
risk of over��ing inherent to the classical GLM model.

We also observed that models using the GLM with separate
designs from (Mumford et al., 2012) perform signi�cantly bet-
ter on this dataset than the standard design, which is consistent
with the purpose of these models. It improves estimation in
highly correlated designs. �e best performing model for both
subjects in this task is the R1-GLMS with FIR basis, followed
by the R1-GLM with FIR basis model for subject 1 and GLMS
with FIR basis for subject 2. �e di�erence between both mod-
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Figure 2: Average correlation score (higher is be�er) on two di�erent subjects
from the �rst dataset. �e average correlation score is the Pearson correlation
between the predicted BOLD and the true BOLD signal on le�-out session,
averaged across voxels and sessions. Methods that perform constrained HRF
estimation signi�cantly outperform methods that use a �xed reference HRF.
As for the image identi�cation performance, the best performing method for
subject 1 is the R1-GLM, while for subject 2 it is the R1-GLMS model, both with
FIR basis. In underlined typography is the GLM with a �xed HRF which is the
method used by default in most so�ware distributions. A Wilcoxon signed-
rank test is performed between each method and the next one in the ordered
result list by considering the leave-one-session out cross-validation scores for
each method. We report p-values to assess whether the score di�erences are
statistically signi�cant.

els (Wilcoxon signed-rank test) was signi�cant with a p-value
< 10−6. Since the results for both subjects are similar, we will
only use subject 1 for the rest of the �gures.

To further inspect the results, we investigated the estima-
tion and encoding scores at the voxel level. �is provides some
valuable information. For example, parameters such as time-
to-peak, width and undershoot of the estimated HRF can be
used to characterize the mis-modeling of a reference HRF for
the current study. Also, a voxel-wise comparison of the dif-
ferent methods can be used to identify which voxels exhibit
a greater improvement for a given method. In the upper part
of Figure 3 we show the HRF estimated on the �rst subject by
our best performing method (the Rank-1 with separate designs
and FIR basis). For comparison we also present two commonly
used reference HRFs: one used in the so�ware SPM and one
de�ned in (Glover, 1999, auditory study) and used by so�ware
such as NiPy7 and fmristat8. Because the HRF estimation will
fail on voxels for which there is not enough signal, we only
show the estimated HRF for voxels for which the encoding
score is above the mean encoding score. In this plot the time-
to-peak of the estimated HRF is color coded. One can observe
a substantial variability in the time to peak, con�rming the ex-
istence of a non-negligeable variability of the estimated HRFs,
even within a single subject and a single task. In particular, we
found that only 50% of the estimated HRFs on the full brain
volume peaked between 4.5 and 5.5 seconds.

In the lower part of Figure 3 we can see a sca�er plot in
which the coordinates of each point are the encoding scores
with two di�erent methods. �e �rst coordinate (X-axis) is
given by the score using a canonical GLM whilst the second
coordinate (Y-axis) corresponds to the Rank-1 separate with
FIR basis. Points above the black diagonal exhibit a higher
score with our method than with a canonical GLM. As pre-
viously, the color represents the time to peak of the estimated
HRF. From this plot we can see that voxels that have a low cor-
relation score using a canonical GLM do not gain signi�cant
improvement by using a Rank-1 Separate FIR model instead.
However, voxels that already exhibit a su�ciently high corre-
lation score using a canonical GLM (> 0.05) see a signi�cant
increase in performance when estimated using our method.

�ese results suggest as a strategy to limit the computational
cost of learning the HRF on an encoding study to perform �rst
a standard GLM (or GLMS) on the full volume and then per-
form HRF estimation only on the best performing voxels.

�e methods that we have considered for HRF estimation
can be subdivided according to the design matrices they use
(standard or separate) and the basis they use to generate the
estimated HRF (3HRF and FIR). We now focus on the perfor-
mance gains of each of these individual components. In the up-
per part of Figure 4 we consider the top-performing model, the
Rank-1 GLMS, and compare the performance of two di�erent
basis sets: FIR with 20 elements in the Y-axis and the reference
HRF plus its time and dispersion derivatives (3HRF) in the X-
axis. �e abundance of points above the diagonal demonstrates

7h�p://nipy.org
8h�p://www.math.mcgill.ca/keith/fmristat/
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Figure 3: Top: HRF estimated by the R1-GLMS method on voxels for which
the encoding score was above the mean encoding score (�rst dataset), color
coded according to the time to peak of the estimated HRFs. �e di�erence in
the estimated HRFs suggests a substantial variability at the voxel level within
a single subject and a single task. Bo�om: voxel-wise encoding score for the
best performing method (R1-GLMS with FIR basis) versus a standard GLM
(GLM with �xed HRF) across voxels. �e metric is Pearson correlation. Points
above the black diagonal correspond to voxels that exhibit a higher score with
the R1-GLMS method than with a standard GLM.

Figure 4: Voxel-wise encoding score for di�erent models that perform HRF
estimation (�rst dataset). As in �gure 3, color codes for the time to peak of the
estimated HRF at the given voxel. Top: two Rank-1 separate design models
with di�erent basis functions: FIR with 20 elements in the Y-axis and the ref-
erence HRF with its time and dispersion derivatives (3HRF) in the X-axis. �e
color trend in this plot suggests that the score improvement of the FIR basis
with respect to the 3HRF becomes more pronounced as the time-to-peak of
the estimated HRF deviates from the reference HRF (peak at 5s). �is can be
explained by taking into account that the 3HRF basis is a local model of the
HRF around the peak time of the canonical HRF. Bo�om: voxel-wise encod-
ing score for two Rank-1 models with FIR basis and di�erent design matrices:
separate design on the Y-axis and classical design on the X-axis. Although
both models give similar results, a Wilcoxon signed-rank test on the leave-
one-session-out cross-validation score (averaged across voxels) con�rmed the
superiority of the separate designs model in this dataset with p-value < 10−3.
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Figure 5: Voxel-wise encoding scores on a single acquisition slice for di�erent
estimation methods (�rst dataset). �e metric is Pearson correlation. In the
upper column, the voxel-wise score is thresholded at a value of 0.045 (p-value
< 0.05), while in the bo�om row the 0.055 contour (p-value < 0.001) for the
same data is shown as a green line. Despite lacking proper segmentations of
visual areas, the estimation methods produce results that highlight meaningful
regions of interest around the calcarine �ssure. �is is particularly visible in
the third column where our method R1-GLMS produces results with higher
sensitivity than the standard GLM method. In the bo�om row it can be seen
how the top performing voxels follow well the folding of the gray ma�er.

the superiority of the FIR basis on this dataset. �e color trend
in this plot suggests that the score improvement of the FIR ba-
sis with respect to the 3HRF basis becomes more pronounced
as the time-to-peak of the estimated HRF deviates from the
reference HRF (peak at 5s), which can be explained by observ-
ing that the 3HRF basis corresponds to a local model around
the time-to-peak. In the bo�om part of this �gure we compare
the di�erent design matrices (standard or separate). Here we
can see the voxel-wise encoding score for two Rank-1 mod-
els with FIR basis and di�erent design matrices: separate de-
sign on the Y-axis and classical design on the X-axis. Although
both models give similar results, a Wilcoxon signed-rank test
on the leave-one-session-out cross-validation score con�rmed
the superiority of the separate designs model in this dataset
with p-value < 10−3.

In Figure 5 we can see the voxel-wise encoding score on
a single acquisition slice. In the upper column, the score is
plo�ed on each voxel and thresholded at a value of 0.045,
which would correspond to a p-value < 0.05 for testing non-
correlation assuming each signal is normally distributed, while
in the bo�om row the 0.055 contour (p-value < 0.001) for the
same data is shown as a green line. Here it can be seen how the
top performing voxels follow the gray ma�er. A possible hy-
pothesis to explain the increase of the encoding score between
the method R1-GLMS with FIR basis and the same method with
3HRF basis could be related either to the shape of the HRF de-
viating more from a canonical shape in lateral visual areas or to
the higher signal-to-noise ratio o�en found in the visual cortex
when compared to lateral visual areas.

4.2. Dataset 2: decoding of potential gain levels

�e mean decoding score was computed over 50 random
spli�ings of the data, with a test set of size 10%. �e decod-
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Figure 6: Averaged decoding score for the di�erent method considered (higher
is be�er) on the second dataset. �e metric is Kendall tau. Methods that per-
form constrained HRF estimation signi�cantly outperform methods that use a
�xed (reference) HRF. In particular, the best performing method is the R1-GLM
with 3HRF basis, followed by the R1-GLMS with 3HRF basis. In underlined ty-
pography is the GLM with a �xed HRF which is the method used by default
in most so�ware distributions. As in Figure 2, a Wilcoxon signed-rank test
is performed and the p-value reported between a given method and the next
method in the ordered result list to assess whether the di�erence in score is
signi�cant.

ing regression model consisted of univariate feature selection
(ANOVA) followed by a Ridge regression classi�er as imple-
mented in scikit-learn (Pedregosa et al., 2011). Both parame-
ters, number of voxels and amount of `2 regularization in Ridge
regression, were chosen by cross-validation.

�e mean score for the 10 models considered can be seen in
Figure 6. Similarly to how we assessed superiority of a given
method in encoding, we will say that a given method outper-
forms another if the paired di�erence of both scores (this time
across folds) is signi�cantly greater than zero. �is is com-
puted by performing a Wilcoxon signed rank test across vox-
els. For this reason we report p-values together with the mean
score in Figure 6.

As was the case in encoding, Rank-1 constrained methods
obtain the highest scores. In this case however, methods with
3HRF basis outperform methods using FIR basis. �is can be
explained by factors such as smaller sample size of each of the
runs, smaller number of trials in the dataset and experimental
design.

5. Discussion

We have compared di�erent HRF modeling techniques and
examined their generalization score on two di�erent datasets:
one in which the main task was an encoding task and one in
which it was a decoding task. We compared 10 di�erent meth-
ods that share a common formulation within the context of
the General Linear Model. �is includes models with canon-
ical and separate designs, with and without HRF estimation
constrained by a basis set, and with and without rank-1 con-
straint. We have focused on voxel-independent models of the
HRF, possibly constrained by a basis set, and have omi�ed
for e�ciency reasons other possible models such as Bayesian
models (Marrelec et al., 2003; Ciuciu et al., 2003; Makni et al.,
2005) and regularized methods (Gou�e et al., 2000; Casanova
et al., 2008).
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Other models such as spatial models (Vincent et al., 2010),
and multi-subject methods (Zhang et al., 2012, 2013) that adap-
tively learn the HRF across several subjects are outside the
scope of this work. �e la�er models are more relevant in the
case of standard group studies and second level analysis.

Our �rst dataset consists of an encoding study and revealed
that it is possible to boost the encoding score by appropriately
modeling the HRF. We used two di�erent metrics to assess
the quality of our estimates. �e �rst metric is the fraction
of correctly identi�ed images by an encoding model. For this
we computed the activation coe�cients on both the training
and validation dataset. We then learned a predictive model of
the activation coe�cients from the stimuli. �is was used to
identify a novel image from a set of 120 potential images from
which the activation coe�cients were previously computed.
�e bene�ts range from 0.9% points to 8.2% points across R1-
constrained methods and subjects. �e best-performing model
in this task is the R1-GLM with FIR basis. �e second metric is
the Pearson correlation. By considering the voxel-wise score
on a full brain volume we observed that the increase in perfor-
mance obtained by estimating the HRF was not homogeneous
across voxels and more important for voxels that already ex-
hibited a good score with a classical design (GLM) and a �xed
HRF. �e best-performing method is the Rank-1 with separate
designs (R1-GLMS) and FIR basis model, providing a signi�-
cant improvement over the second best-performing model. We
also found substantial variability of the shape in the estimated
HRF within a single subject and a single task.

�e second dataset consists of a decoding task and the re-
sults con�rmed that constrained (rank-1) estimation of the
HRF also increased the decoding score of a classi�er. �e met-
ric here is Kendall tau. However, in this case the best perform-
ing basis was no longer FIR basis consisting of ten elements
but the three elements 3HRF basis (HRF and derivatives) in-
stead, which can be explained by factors such as di�erences in
acquisition parameters, signal-to-noise ratio or by the regions
involved in the task.

A higher performance increase was observed when consid-
ering the correlation score within the encoding model. �is
higher sensitivity to a correct (or incorrect) estimation of the
HRF can be explained by the fact that the estimation of the HRF
is used to generate the BOLD signal on the test set. �e metric
is the correlation between the generated signal and the BOLD
signal. It is thus natural to expect that a correct estimation of
the HRF has a higher impact on the results.

In the decoding setup, activation coe�cients (beta-map) are
computed but the evaluation metric is the accuracy at predict-
ing the stimulus type. �e validation metric used for decoding
is less sensitive to the HRF estimation procedure than the cor-
relation metric from the encoding study, although it allowed
us to observe a statistically signi�cant improvement.

6. Conclusion

We have presented a method for the joint estimation of HRF
and activation coe�cients within the GLM framework. Based
on ideas from previous literature (Makni et al., 2008; Vincent

et al., 2010) we assume the HRF to be equal across conditions
but variable across voxels. Unlike previous work, we cast our
model as an optimization problem and propose an e�cient al-
gorithm based on quasi-Newton methods. We also extend this
approach to the se�ing of GLM with separate designs.

We quantify the improvement in terms of generalization
score in both encoding and decoding se�ings. Our results
show that the rank-1 constrained method (R1-GLM and R1-
GLMS) outperforms competing methods in both encoding and
decoding se�ings.
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