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a b s t r a c t

The meaning of words referring to concrete items is thought of as a multidimensional representation that
includes both perceptual (e.g., average size, prototypical color) and conceptual (e.g., taxonomic class)
dimensions. Are these different dimensions coded in different brain regions? In healthy human subjects,
we tested the presence of a mapping between the implied real object size (a perceptual dimension) and
the taxonomic categories at different levels of specificity (conceptual dimensions) of a series of words,
and the patterns of brain activity recorded with functional magnetic resonance imaging in six areas along
the ventral occipito–temporal cortical path. Combining multivariate pattern classification and re-
presentational similarity analysis, we found that the real object size implied by a word appears to be
primarily encoded in early visual regions, while the taxonomic category and sub-categorical cluster in
more anterior temporal regions. This anteroposterior gradient of information content indicates that
different areas along the ventral stream encode complementary dimensions of the semantic space.

& 2016 Elsevier Inc. All rights reserved.
Introduction

How is the meaning of words instantiated in the brain? Making
sense of symbols involves retrieving from long term memory the
semantic representations that define what they stand for. One way
to think about semantic representations is to consider them as
points in a multidimensional space, where each dimension re-
presents a specific property of the concept denoted by the word. In
the case of words referring to concrete entities, the semantic space
includes both perceptual dimensions (i.e., apprehended through
sensory systems; e.g., vision for the prototypical shape, size, or
color; audition for prototypical sound) as well as conceptual di-
mensions (i.e., resulting from a complex combination of multiple
sensory-motor ones; e.g., taxonomic class, functional information).
Storing both perceptual and conceptual features of object concepts
is indeed key for making sense of the word surrounding us, thus
roimaging Unit, CEA-Saclay,
91191 Cedex Gif Sur Yvette,

V. Borghesani).
for generalizing across conceptually similar but perceptually dif-
ferent objects, and differentiating between perceptually similar
but conceptually different ones (Rogers et al., 2004). Consider the
words “mouse”, “clownfish”, “giraffe”: thanks to the multi-
dimensional nature of the semantic space we immediately know
that the first two refer to animals that are close in size (compared
to the third one); that the last two have a similar color (compared
to the first one); and that the first and the last one are close in
taxonomy (both are terrestrial mammals, compared to the second
one, a fish). In this paper, we refer to “perceptual semantic di-
mensions” of the semantic space as those dimensions along which
physical properties of the objects (e.g., size, shape, color, sound)
are encoded; and we refer to “conceptual semantic dimensions” of
the semantic space as those dimensions along which more com-
plex categorical taxonomic groupings of the objects (e.g., taxo-
nomic class) are encoded.

The question that we approach in this paper is how this mul-
tidimensional representational geometry maps onto neural activ-
ity. Even though the quest for the neural underpinning of se-
mantics has a longstanding tradition (Martin, 2007; Binder et al.,
2009), neither neuropsychology nor functional neuroimaging
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research have provided conclusive evidence on how different
perceptual vs. conceptual semantic dimensions defining single
concepts are encoded in the brain. Clinical data so far suggest that
semantic knowledge is neurally coded in a distributed fashion, as
it can be degraded by lesions to sensory–motor brain regions
(Pulvermüller and Fadiga, 2010), and profoundly disrupted by le-
sions to higher–level associative regions (especially the anterior
temporal lobe) (Gorno-Tempini et al., 2004; Hodges and Patterson,
2007; Lambon Ralph, 2014). Similarly, functional neuroimaging
data indicate that during processing of object-related words there
is an increased activation not only in high–level associative cor-
tices (sometimes referred to as “semantic hubs” (Patterson et al.,
2007)) such as the inferior frontal cortex (Devlin et al., 2003), the
anterior temporal cortex (Mion et al., 2010), or the inferior parietal
cortex (Bonner et al., 2013), but also in primary and secondary
sensory–motor cortices, in a way that appears proportional to the
relevance of perceptuo-motor attributes (Pulvermuller, 2013). Re-
searchers capitalizing from both machine learning techniques and
Representational Similarity Analysis (RSA) frameworks have
shown that it is possible to discriminate between words belonging
to different semantic categories (e.g., animals vs tools) as well as
sub-categorical clusters (e.g., mammals vs insects) using dis-
tributed patterns of brain activation (Shinkareva et al., 2011;
Bruffaerts et al., 2013; Devereux et al., 2013; Fairhall and Car-
amazza, 2013; Simanova et al., 2014), but they did not determine if
Fig. 1. Words meaning describes a multidimensional semantic space (a) The words used
and fMRI experiments. Multidimensional scaling technique was used to visualize the sem
words denoting tools (right). Four clusters of semantically close words are detectable in
mammal sea animals, not–mammal sea animals, weapons, office/schools tools, work ap
judgment task. (b) Predicted similarity matrices modeling the similarities across stim
pairwise differences in terms of number of letters between the stimuli. The implied real
pairs of stimuli. The semantic category matrix indicates which pairs of stimuli belong to t
designates which pairs of stimuli belong to the same semantic cluster (e.g. cluster of do
such discriminations were driven by conceptual or/and by corre-
lated perceptual information (Naselaris and Kay, 2015). Finally, the
so called “encoding” approach (modelling and predicting voxel-
wise activation for different stimuli according to their defining set
of features) has been successfully applied to predict brain activa-
tion during the elaboration of images and movies (Naselaris et al.,
2009; Nishimoto et al., 2011), and only very recently to words
(Fernandino et al., 2015a). This last study, despite being similar to
the present research in that it investigate the semantic coding of
symbols (words), only investigated the impact of what we call
here “perceptual features” (and not categorical “conceptual” ones).
Moreover, it failed to provide a clear picture of the brain topo-
graphy involved in encoding each of the different features tested.
Previous groundbreaking work used a computational model
(trained on words data from text corpus) to predict the neural
activation associated with written words, but always presented
words together with their corresponding picture, thus being un-
able to dissociate the contribution of low level properties of the
physical input from the pure semantic activation driven by the
symbolic stimulus (Mitchell et al., 2008).

Here we are interested in studying the types of representations
that are evoked by purely symbolic stimuli (written words), and
we test the hypothesis that perceptual and conceptual dimensions
of the word meaning, for which behavioral studies suggest that
they are automatically activated during reading (Rubinsten and
as stimuli in behavioral (a similarity judgment task and a feature generation task)
antic distances perceived between the 12 words denoting animals (left) and the 12
each of the two semantic categories: domesticated land animals, wild land animals,
pliances, and hair instruments. Here shown: the MDS retrieved from the similarity
uli along the four dimensions investigated. The words’ length matrix depicts all
–world size matrix is built computing the distances in ranking position between all
he same category (e.g. both animals) and which do not. The semantic cluster matrix
mesticated land animals: cow, sheep and goat) and which do not.
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Henik, 2002; Zwaan et al., 2002; Setti et al., 2009), are coded
partially independently in the brain. If that was the case, then we
should observe brain regions of which the response profiles reflect
dimension–specific metrics, resulting in a double dissociation:
some areas should present activation patterns more consistent
with the perceptual dimensions of the stimulus space and less
with the more conceptual ones (e.g., size, but not taxonomic class),
while other areas should present the complementary activation
patterns (e.g., more related to taxonomic class and less to size). We
presented adult subjects with written words varying para-
metrically along three different dimensions (Fig. 1a-b): one low
level purely physical (the number of letters), one perceptual-se-
mantic (the average real–word size of the objects referred to by
the words), and one conceptual-semantic (at two levels of gran-
ularity, consisting in 2 semantic categories, each subdivided in
4 sub-categorical clusters). We investigated to what extent the
representational geometry of different regions along the ventral
visual stream matched the dimension-specific cognitive re-
presentational geometry of the stimuli. We predicted that the vi-
sual–perceptual semantic dimension of the semantic space would
be primarily encoded in early visual regions of the ventral stream
(Pulvermuller, 2013), while the conceptual dimensions would be
primarily encoded further anteriorly in the temporal lobe (Peelen
and Caramazza, 2012). Driven by these predictions, we therefore
concentrate our analyses on the ventral visual path.
Materials and methods

Subjects

Sixteen healthy adult volunteers (five males, mean age
30.8775.34) participated in the fMRI study. All participants were
right–handed as measured with the Edinburgh handiness ques-
tionnaire, had normal or corrected–to–normal vision, and were
Italian native speakers. All experimental procedures were ap-
proved by the local ethical committee and each participant pro-
vided signed informed consent to take part in the study. Partici-
pants received a monetary compensation for their participation. A
seventeenth volunteer was excluded from the analyses for not
complying with the task (see Testing procedures).

Stimuli

In order to select the target stimuli for the fMRI experiment (i.e.
24 words, 12 names of animals and 12 names of tools) we ran two
preliminary behavioral experiments that involved 130 Italian na-
tive speakers, tested through internet–based questionnaires.

In the first experiment, we pre-selected 12 animal and 12 tool
words, presented fifty subjects with 132 pairs of such words and
asked them to rate how similar the concepts indicated by the
words were (on a Likert scale from 1 – not similar at all – to 7 –

very similar). In order to prevent the large difference across ca-
tegories from overshadowing the smaller, but relevant, differences
within them, we did not pair words belonging to the two different
categories and we presented tool word pairs and animal word
pairs in separate blocks. The order of presentation of the different
pairs inside each category was randomized between subjects
while the order of presentation of the two categories was pseudo–
randomized: half of the subjects rated animals before tools and the
other half did the opposite. All subjects’ scores were normalized by
scaling them between 0 and 1, in order to correct for possible
inter–individual differences in the ranking scale adopted. Nor-
malized data were then re–arranged to create two 12�12 ma-
trices describing the pairwise semantic distance between words
for animals and tools separately. Next, for both categories we
computed the two mean distance matrices averaging across all
subjects. We then applied multidimensional scaling analysis (MDS,
2 dimension, criterion: metric stress) to obtain a graphical re-
presentation of the cognitive semantic space of our subjects.

In the second experiment, eighty new subjects took part in a
feature generation task: they were asked to list between 5 and 10
characteristics or properties of each of the 24 target stimuli. They
were instructed to think about both the physical and perceptual
properties (in terms of view, touch, hearing, etc.) and functional
properties (e.g. where it is usually found, how and for what it is
usually used), as well as any other feature that could be considered
important to describe the concepts the word presented referred to.
A similarity matrix between the words was then created on the
basis of computing how many features were shared by any pair of
words belonging to the same category. The subsequent steps (i.e.
normalization, conversion in distance matrices and MDS applica-
tion) were the same as for the similarity judgment task. The goal
of collecting these seemingly redundant pieces of data (experi-
ment 1 and 2) was to ensure that the clusters defined were solid
(not task dependent) and emerged spontaneously from subjects
judgments not only when they were to judge explicitly semantic
similarity across word pairs (semantic similarity task) but also
when they had to evaluate words individually (features generation
task).

Results from the two experiments converge in pointing to
4 sub-categorical clusters in each of the two categories. In the
animals set the clusters were: domesticated land animals (cow,
sheep, and goat), wild land animals (zebra, camel and giraffe), sea
mammals (whale, dolphin and seal), and not–mammal sea animals
(squid, shrimp and octopus). In the tools set the clusters were
weapons (spear, saber and sword), office/schools tools (pencil,
pastel, pencil sharpener), work appliances (hammer, nail, and
pincer), and hair instruments (comb, brush, and hairpin) (Fig. 1a).

In order to test the reliability and the consistency of these re-
sults, we asked 20 out of the 50 subjects who participated in the
similarity judgment experiment to complete the similarity judg-
ment task a second time after 6 months. Subjects received the
same instruction as the first time with the added note that it was
not a memory task and they should not try to remember the an-
swer given 6 months before. On these data, the same pipeline of
analyses described above was applied. The correlation between
subjects’ similarity matrices was used as a measure of inter–sub-
ject variability, while the correlation within subjects was used to
estimate the intra–subject consistency. All pairwise across subjects
correlations were statistically significant: the average correlation
coefficient was 0.7370.07 for animals and 0.5670.08 for tools at
the first evaluation, and 0.6870.09 for animals and 0.5270.05 for
tools at the second evaluation. Subjects were also consistent across
sessions: all showed a significant and positive correlation between
their two judgments for both sets, with an average of 0.7870.14
for animals and 0.6070.15 for tools. These analyses were per-
formed with Matlab Statistical Toolbox.

Words belonging to the different semantic categories and
clusters were well matched across several psycholinguistic vari-
ables such as number of letters, number of syllables, gender, ac-
cent and frequency of use (retrieved from Corpus e Lessico di Fre-
quenza dell’Italiano Scritto – COLFIS, http://linguistica.sns.it/CoLFIS/
Home.htm). These psycholinguistic variables did not differ across
the two semantic categories (two–sample t-test of frequency: t¼–

0.35, p¼0.73; number of letters: t¼–1.99, p¼0.06; number of
syllables: t¼–0.34, p¼0.74; chi–square of gender χ¼0.34, p¼0.56;
accent χ¼3.0, p¼0.08) or across the four semantic clusters
(Kruskal–Wallis test for small sample size of frequency: h¼10.44,
p¼0.17; number of letters: h¼8.38, p¼0.30; number of syllables:
h¼9.34, p¼0.23; chi–square test of gender: χ¼6.0, p ¼0.54; ac-
cent: χ¼2.44, p¼0.93). These analyses were run with the
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statistical functions provided by Python's library SciPy (http://
docs.scipy.org/doc/scipy/reference/stats.html).

Testing procedures

In order to obtain a measure of the subject specific cognitive
semantic space and verify the validity of the pre-defined clusters
for the subjects participating in our fMRI experiment, we asked
our participants to complete the same similarity judgment ques-
tionnaire as described above. The experimental session of the
main experiment was divided into two parts: first, subjects un-
derwent the fMRI experiment (being totally naïve with respect to
the type of stimuli that were going to be presented), then they
completed the similarity questionnaire. The analyses of the ques-
tionnaires followed the same steps as we used to pre–select the
stimuli. To assess the consistency of each subject's judgement with
the semantic space that had emerged from our prior behavioral
experiments, we computed the correlation between the subject
specific normalized distance matrix for animals and tools and the
average ones obtained from the fifty subjects that had participated
in the first behavioral study. Because one subject failed to comply
with the instruction of the task (pressing the response keys ac-
cording to a numerical progression (1, then 2, then 3, etc…)
Fig. 2. Experimental setting and low level stimuli representation. (a) Example of a seque
the target stimuli and to press a button at the presentation of rare odd stimuli. The od
targets. (b) Regions of interest were defined based on anatomical criteria. Proceeding fro
Brodmann area 18 (secondary visual areas), Brodmann area 19 (lateral and superior occip
temporal gyrus), and Brodmann area 38 (temporal pole). (c) Results concerning the ph
model applied (scoring metric: Kendall tau) was able to predict the number of letter
correlation between neural similarity matrix and length of words matrix is significant
mensions investigated). Uppermost: in a template brain, the six ROIs are colored accord
purely physical dimension is confined in occipital visual areas. We are showing the av
significance (*po0.05, **po0.001, ***po10�5) is computed with a permutation test an
and **/*** survive Bonferroni correction (p¼0.05/6 areas¼0.0083).
regardless of the pair of words presented), we excluded his data
(both behavioral and fMRI) from further analysis. All sixteen re-
maining subjects showed positive and significant correlations with
the behavioral group average: 0.8470.08 and 0.8470.10 for the
animals and tools respectively. Because there was very little inter-
subject variability in the ratings we decided not to apply a subject
specific similarity space in the subsequent fMRI analyses.

During the fMRI experiment, subjects were instructed to si-
lently read the target stimuli (i.e. 12 names of tools and 12 names
of animals) and to perform semantic decisions only on extremely
rare odd stimuli (Fig. 2a). The odd stimuli appeared on average on
16% of the trials and consisted either in a picture or in a triplet of
words referring to one of the targets, promoting both a depictive
and a declarative comparison. Subjects pressed a button with the
left or the right hand to indicate whether the odd stimulus was
related or not to the previously seen target word (1–back task).
The hand–answer mapping was counterbalanced within subjects:
half of the subjects answered yes with the left hand in the first half
of the fMRI runs and then yes with the right hand in the last half;
the other half of the subjects followed the reverse order. The tri-
plets of words defining the target stimuli did not contain any
verbs, in order not to stress the functional differences between
animals and tools. Such a 1–back oddball task was orthogonal to
nce of stimuli: during the fMRI experiment, subjects were instructed to silently read
d stimuli consist either in a picture or in a triplet of words referring to one of the
m the occipital lobe to the temporal pole: Brodmann area 17 (primary visual area),
ital gyri), Brodmann area 37 (occipito–temporal cortex), Brodmann area 20 (inferior
ysical dimension of our stimuli (length of the words). Lowermost: the regression
composing each word in primary and secondary visual areas. Middle: the partial
in primary and secondary visual areas (while controlling for the other three di-
ing to the normalized partial correlation scores, highlighting how the effect of the
erage scores across subjects (no¼16) and error bars indicate the s.e.m. Statistical
d very low p-value are rounded to po10�5. Exact p-values are reported in the text
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the dimensions investigated (size, category, cluster), and this al-
lowed us to disentangle task–dependent processes from the
spontaneous mental representations of the words (Cukur et al.,
2013). Target stimuli were flashed in the center of the screen three
times in a row (each time in a different font among Lucida Fax,
Helvetica and Courier, to avoid adaptation): each presentation
lasted 0.5 s and the interval between them was 0.2 s for a total of
1.9 s for each target stimulus. The goal for this multiple flashed
presentation was to ensure that subjects well read the word but at
the same time did not have time to make eye movements. The
inter target interval was randomly chosen between three values
(1.7 s, 1.8 s and 1.9 s, mean¼1.8 s). The odd events were presented
differently according to their nature: images were shown for 2.0 s
while definitions appeared as a series of three words, presented in
a sequence, each for 0.5 s with an interval of 0.2 s between them.
The interval after each odd event was randomly chosen between
three values (1.7 s, 2 s and 2.3 s, mean¼2 s). The average accuracy
in the oddball task was very high¼92.64% (missed¼2.06%,
errors¼5.2%). Within a given fMRI session, participants under-
went 6 runs of 9 min and 40 sec each. Each run contained 4 re-
petitions of each of the 24 targets, 16 odd stimuli, and 24 rest
periods (only fixation cross present on screen for 1.5 s). Stimuli
were completely randomized for each subject and each run, the
only constraint being that odd stimuli would appear every 6-to-10
target stimuli. This ensures that, notwithstanding the (minimal)
memory component of the task, we can exclude that the results
reflect any systematicity due to the stimulus sequence. They were
presented with Matlab Psychophysics toolbox (http://psychtool
box.org/).

MRI protocols

Data were collected at Neurospin (CEA–Inserm/Saclay, France)
with a 3 T Siemens Magnetom.

TrioTim scanner using a 32–channel head coil. Each subject
underwent one session that started with one anatomical acquisi-
tion followed by six functional runs. Anatomical images were ac-
quired using a T1–weighted MP–RAGE sagittal scan (voxels size
1x1�1.1 mm, 160 slices, 7 minutes). Functional images were ac-
quired using an echo–planar imaging (EPI) scan over the whole
brain (repetition time¼2.3 s; echo time¼23 ms; field of
view¼192 mm; voxel size¼1.5�1.5�1.5 mm; 235 repetitions; 82
slices, multi–band acceleration factor 2, GRAPPA 3) (Feinberg et al.,
2010; Moeller et al., 2010). The acquisition used a phase encoding
direction from posterior to anterior (PA) and an inclination of –20°
with respect to the subject's specific AC/PC line.

Data pre–processing and first level model

Pre–processing of the raw functional images was conducted
with Statistical Parameter Mapping toolbox (SPM8, http://www.fil.
ion.ucl.ac.uk/spm/software/spm8/). It included realignment of
each scan to the first of each given run, co–registration of anato-
mical and functional images, segmentation, and normalization to
MNI space. No smoothing was applied. For each subject in-
dividually, functional images were then analyzed within the fra-
mework of a general linear model (GLM). For each of the 6 runs, 35
regressors were included: 24 regressors of interest (corresponding
to the onset of the 12 names of animals and 12 names of tools),
4 regressors of no–interest (corresponding to the onset of the odd
events – definitions and images – subdivided into those receiving a
left hand vs right hand response from the subject), 6 head–motion
regressors (i.e. the six–parameter affine transformation estimated
during motion correction in the pre–processing) and 1 constant.
Fixation baseline was modeled implicitly and regressors were
convolved with the standard hemodynamic response function
without derivatives. Low–frequency drift terms were removed by a
high–pass filter with a cutoff of 128 s. Thus, one beta map was
estimated for each target event (i.e. words stimuli) for each run.
Both subsequent multivariate analyses – decoding and RSA – had
as input data the 24�6 beta maps corresponding to the target
stimuli normalized across conditions separately run by run (i.e.
within each run the values for each given voxel were normalized
across conditions to have zero mean and unit variance).

Region of interest

Given our hypothesis and the absence of principled functional
localizers, to avoid circularity regions of interests (ROIs) were de-
fined only based on anatomical criteria thanks to SPM toolbox
PickAtlas (Fig. 2b). Proceeding from the occipital lobe to the
anterior temporal lobe (ATL), we selected six Brodmann areas
along the ventral visual pathway: BA 17 – primary visual area, BA
18 – secondary visual areas, BA 19 – lateral and superior occipital
gyri, BA 37 – occipito–temporal cortex (includes the posterior fu-
siform gyrus and the posterior inferior temporal gyrus), BA20 –

inferior temporal gyrus, and BA 38 – temporal pole. We included
homologue areas from both hemisphere and the average number
of voxels of each ROI were: BA17 (13940 voxels), BA18 (69617
voxels), BA19 (65248 voxels), BA37 (65248 voxels), BA20 (28026
voxels), BA38 (27254 voxels). Given the known signal drop out
problems in ATL and following previous similar studies (Peelen
and Caramazza, 2012), for each subject we calculated the signal–
to–fluctuation–noise–ratio (SFNR) map by dividing the mean of the
time series (of the first run) by the standard deviation of its re-
siduals once detrended with a second order polynomial (Friedman
et al., 2006). This analysis was carried out with the python library
nipype (http://nipy.org/nipype). We then computed the average
SFNR in each of our ROIs and verified that in all regions this value
was above the value of 20 which is usually considered to be the
limit for meaningful signal detection (Binder et al., 2011). The
average SFNR across the 16 subjects for BA17 was 49.7675.63,
BA18¼49.3474.89, BA19¼52.7674.7, BA37¼42.7873.65,
BA20¼32.8772.69, and BA38¼30.9972.43.

Univariate analyses

For the univariate analyses only, beta maps where smoothed
(kernel [4,4,4]). First, two random effects analyses were run
searching for regions in which activity was linearly modulated by
length of words and implied real world size. Second, random ef-
fects analysis was applied to the contrast animals vs tools. Un-
surprisingly, the only significant result was a linear effect of length
of words in 5 occipital clusters (extent threshold¼100 voxel,
po0.001 FEW corrected) comprising primary and secondary vi-
sual cortices. This is in line with the literature on categorical ef-
fects on the ventral stream that shows less consistent results when
words stimuli are used (as compared with pictures) [for a recent
review on the topic: (Bi et al., 2016)].

Multivariate pattern analyses

None of the semantic variables of interest resulted in a dis-
sociation at the univariate analysis level, thus we used multivariate
pattern analysis (MVPA) which investigates differences in the
distributed patterns of activity over a given cortical region (Davis
and Poldrack, 2013). In this framework, the decoding approach
aims at predicting one or more classes of stimuli (i.e. “classification
problem”) or a continuous target (i.e. “regression problem”) based
on the pattern of brain activation elicited by the stimuli. The
models are fitted on part of the data (i.e. train set) and tested on
left–out data (i.e. test set). Previous studies of semantic
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representations used this method to decode the semantic category
of words from brain activations patterns, and generalize this ca-
tegorical discrimination across different input formats (from pic-
tures to words and vice versa) (Shinkareva et al., 2011; Simanova
et al., 2014). These studies, however, are limited because: (1) they
evaluate the decoding model on the full brain volume, which fails
to provide evidence in favor or against the differential contribution
of different regions in coding sensory and/or conceptual in-
formation (Shinkareva et al., 2011), or (2) they contrast two broad
semantic categories (i.e. animals vs tools), without investigating
which dimensions of the meaning of the words (i.e. conceptual vs
perceptual) drove the observed discriminations (Simanova et al.,
2014). A second approach, representational similarity analysis
(RSA) (Kriegeskorte et al., 2008), compares the similarity between
different stimuli and the one observed between the multivoxel
activations patterns elicited by them (i.e. neural similarity). To our
knowledge, this approach was deployed only a few times to in-
vestigate the processing of symbolic stimuli (words), and no one
investigated at the same time the organization of concepts inside
and across semantic categories (Bruffaerts et al., 2013; Devereux
et al., 2013). Contrary to previous studies, we estimated the si-
milarity of our stimuli considering multiple dimensions at the
same time: a low-level physical dimension (number of letters),
and three semantic dimensions (a perceptual–semantic: the size of
the objects referred to by the words, and two conceptual–semantic
dimensions: the category and sub–category cluster). An advantage
of RSA is that it permits the investigation of the neural coding of
several different dimensions even when those are partially corre-
lated in the stimuli. For example, in the case of our stimuli there
was a correlation between semantic category and implied–real
world size, in that the implied real world size of the animals was
on average larger than that of tools. Using partial correlation as the
association metric within RSA (hereafter “partial correlation RSA”),
we are robust to the effect of one dimension (e.g. size) while
testing for the correlation between the other dimension (e.g. ca-
tegory) and the neural similarity in a given region (Clarke and
Tyler, 2014).

Decoding models

We used two different decoding models to solve our four dif-
ferent prediction problems. First, to predict the number of letters
composing each word, we applied a regression model in all ROIs.
The chosen model was a Ridge regression (linear least squares
with l2–norm regularization). The regularization parameter was
selected by a nested cross–validation loop. Given the ordinal nat-
ure of our problem (i.e. what matters is the rank position, not the
absolute value) the metric used to assess the prediction quality
was the Kendall rank correlation coefficient (or Kendall tau). The
same regression model was used to predict the averaged implied
real world size of the objects referred to by the words: all animals
and tools where ranked, regardless of their semantic classification,
from the smallest (i.e., pencil sharpener) to the biggest (i.e. whale).
The ranking scale was devised by the authors considering the
average size of the items. When possible, we used information
from encyclopedias; when that information was not available,
each author gave an approximate estimate and ranked the items
independently; it was then verified that the ranks converged [the
rank of the items can be found in Supplementary table 1]. Given
that in our set of stimuli the object sizes increased logarithmically,
the rank, which we used as our size metric, is equivalent to the
logarithm of the sizes (correlation between the ranks and the log
of the sizes r2¼0.98).

To solve the binary classification problem related with the se-
mantic category (i.e. decode whether a given beta map corre-
sponded to an animal or a tool word) we used a support vector
machine (SVM) model with linear kernel. The loss function chosen
was squared hinge loss with l2–norm regularization and, again,
the regularization parameter was selected by a nested cross–vali-
dated loop. Finally, the same model was applied to solve the
multiclass problem using a one–vs–rest scheme.

For all decoding models, we report the cross–validation scores
computed by averaging the scores of 5 folds with a leave–one–run–
out scheme: within each subject data from five out of six runs
were used to fit the model and data from the held out run were
used to test it. The group–level results were then computed
averaging the scores obtained by each subject, and their sig-
nificance was tested against the empirically estimated random
distribution. To obtain such a distribution, the procedure used to
obtain the group results was repeated 10,000 times randomly
permuting the labels.

The same regression and classification models were fed with
the stimuli themselves (i.e., the matrices of 0 and 1 representing
the physical appearance of the words used during the experiment,
averaging across the three fonts used) to rule out that any of our
results could be explained by some low–level characteristic of the
stimuli. The goal here is to show that in the stimuli themselves
there is already enough information to decode the low level
physical dimensions (i.e., number of letters), but not higher level
semantic dimensions (nor the perceptual one – size, nor the con-
ceptual one – category and cluster), thus showing that what is
retrieved from the patterns of brain activity is not due to any low
level property of the stimuli used.

All the analyses described in this section were conducted with
the machine learning library in Python Scikit–Learn (http://scikit-
learn.org).

RSA

The first step of representational similarity analysis was the
modeling of predicted similarity matrices corresponding to the
different dimensions investigated. Concerning word length the
matrix was built computing the pairwise absolute difference in
number of letters between every word pair (the simplest measure
of visual similarity). For instance, the entry corresponding to sheep
(no of letters¼5) vs cow (no of letters¼3) would contain a |5–3|¼ |
2|. The same strategy was applied to the implied real size ranking
scale: the entry corresponding to whale (position in ranking¼24)
vs pencil sharpener (position in ranking¼1) would contain a |24–
1|¼ |23|. These first two matrices show distances (i.e. dissimilarity)
thus in order to be compared with the neural similarity matrices,
their values need to be inverted (similarity¼1–dissimilarity). As to
the conceptual dimensions of our stimuli, two matrices were built:
one depicting the two semantic categories and one describing the
eight clusters that had emerged from the behavioral study. The
first one had 1 for all entries of the same category (i.e. all identical
combinations: two animals or two tools) and 0 everywhere else
(i.e. all different combinations: an animal and a tool). The semantic
cluster matrix was built likewise, thus having 1 for all combina-
tions of items from the same cluster and 0 everywhere else. The
four matrices being symmetrical (Fig. 1b), they were vectorized
discarding the diagonal and keeping only the upper half, then
standardized to have mean 0 and standard deviation 1. It should
be noted that there is a significant correlation between the simi-
larity matrix of size and the ones of semantic category (r¼0.39,
po0.001) and semantic cluster (r¼0.27, po0.001), due to the fact
that animal–words tend to refer to big items and tool–words tend
to refer to small items. There is, clearly, a correlation between the
predicted similarity matrix representing the two semantic cate-
gories and the one describing the 8 semantic clusters (r¼0.32,
po0.001). Importantly, there is no significant correlation between
the predicted similarity matrix for length and the ones for size
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(r¼0.04, p¼0.49), category (r¼0.06, p¼0.32), or cluster
(r¼�0.002, p¼0.97).

In order to retrieve the neural similarity matrices, for each
subject and in each ROI, we built a vector with all the voxels’ va-
lues for a given stimulus (i.e. from a given beta map). The six sti-
mulus-specific vectors were averaged and all pairwise correlations
between vectors were computed (by means of Pearson's correla-
tion). The 24�24 neural similarity matrix obtained was then
vectorized as done for the predicted similarity matrices. We obtain
thus four vectors (denoted as XL, XS, XC and Xk) from the predicted
similarity matrices and one (denoted as Y) from the neural simi-
larity matrix. In order to directly test our hypothesis, we need to
be able to estimate the contribution of each single predicted si-
milarity matrix (e.g., Xk) to the neural one (Y) while controlling for
the effect of the other ones (e.g., XL, XS, XC). Expressing the neural
similarity vector as a linear combination of the predicted similarity
vectors plus a noise term, we are interested in testing the null
hypothesis that the partial regression coefficient of a given pre-
dicted similarity matrix is not significantly different from zero.
That is, given the model Y¼β1XLþβ2XSþβ3XCþβ4XKþε where ε
is a vector of residuals, we would like to test the null hypothesis
H0: βi≠0 (where i can take the values {1, 2, 3, 4}). The test statistic
we used for this hypothesis is the partial correlation between all
pairs of Y and X (e.g., Y and Xk), controlling for the remaining
variables Z (e.g., XL, XS, XC). The partial correlation of two vectors Y
and X while controlling for Z is given as the correlation between
the residuals RX and RY resulting from the linear regression of X
with Z and of Y with Z, respectively. Since the distribution of this
statistic is unknown, we choose to obtain the significance level
using a permutation test (Anderson and Robinson, 2001). Thus, for
each subject and each ROI, we computed the partial correlation
between the neural similarity matrices and each predicted simi-
larity matrix (controlling for all the others). The observed result of
size is thus corrected for the potential residual correlation be-
tween the neural signal and length, category and cluster, the one
of category is corrected for length, size and cluster, and so on.
Then, scores from all the subjects where averaged and the sig-
nificance of the group–level results was tested against the em-
pirically estimated random distribution similarly to what has been
done for the decoding models. Two features of partial correlation
RSA should be noted. First, as Pearson correlation RSA it assumes
linear relations between the variables, and the inferences might
not be valid if a strong non-linearity underlies the relationship
between the physical/cognitive variables and the patterns of brain
activation. This issue will need to be tackled in the future to fur-
ther refine this type of RSA analysis. Second, from a neurobiolo-
gical point of view, the use of partial RSA can elucidate whether
multiple (and partially correlated) features of the stimuli can be
independently encoded in the same (set of) brain regions. We
think that this question is legitimate, especially in light of the fact
that pure functional selectivity (i.e., a brain region in which neu-
rons are solely involved in coding one specific stimulus feature) is
clearly not a feature of our brain. It is however necessary to re-
member that the observation of an interaction between brain re-
gion and feature would not imply that a given feature (e.g., size) is
solely represented in a given brain region (e.g., visual areas). It
would only indicate that there is more residual signal related to a
given feature in one area compared to the other. Such results could
reflect the fact that more neurons code for one feature in one area
than in another one. Alternatively, it may suggest that the different
features are encoded with a different degree of precision across
areas. The current methods do not allow differentiating across
these scenarios: detailed electrophysiological studies might be
useful to address the question.

All the analyses described in this section were conducted with
in–house python scripts.
Supplementary analyses

We performed five supplementary analyses:

) In order to demonstrate that our semantic effects (especially
those that we could recover from activity in early visual regions)
could not be explained by information present in the physical
appearance of the stimuli themselves, we applied all the
aforementioned decoding and partial correlation RSA analyses
to the images of the stimuli (i.e. the snapshots of the screens
with the words we presented to the subjects during the fMRI
experiment).

) To better qualify the effect of size as separated, thus in-
dependent from the effect of length, even though there was no
significant correlation between the predicted similarity matrix
for length and size (r¼0.04, p¼0.49), nor between length and
size across the stimuli themselves (r¼0.38, p.¼0.06), we re-run
the partial RSA analyses on a subset of words by removing the
two more extreme words length-wise (the shortest and the
longest, one animal (“FOCA”) and one tool (“TEMPERINO”)). This
further reduced the already non-significant correlation across
Length and Size in our stimuli (down to R¼0.27 (p.¼0.21)), and
the respective distance matrices (down to R¼�0.03 (p.¼0.5)).

) To better qualify the presence of different gradients along the
ventral stream, we tested for an interaction between the 3 dif-
ferent semantic dimensions (size, category, cluster) and our
ROIs by feeding subjects’ partial correlation scores (once Fisher
r-to-z transformed) into an ANOVA (6 ROIs�3 dimensions), and
then performed trend analyses with SPSS (http://www.ibm.
com/analytics/us/en/technology/spss/), testing for a linear, a
quadratic, a cubic, a 4-th and a 5-th order term for each of the
3 dimensions.

) To verify the impact of the partial correlation RSA (vs. standard
RSA), we also computed, for all predicted matrices and ROIs,
standard Pearson correlation (standard RSA), assessing their
significance with permutation tests.

) Finally, to investigate whether the effects were lateralized, we
run an additional partial correlation analysis on the same ROIs
but separately for the right and left hemisphere.
Results

In each ROI we applied different MVPA models tailored to our
variables and cognitive questions. Firstly, we used decoding to
predict: the number of letters composing each word and the re-
lative implied real–size (using the rank from the smallest to the
biggest item, approximatively equivalent to the logarithm of the
real size), through a regression model; and the conceptual–se-
mantic dimensions at two different scales, that of the semantic
category and that of a finer–grained semantic cluster, through a
binary classification and a multi–class classification model. We
then further qualified the results through partial correlation RSA,
and compared the pattern of fMRI activations to words with those
predicted by the similarity of the stimulus conditions along the
aforementioned dimensions. Extremely low p-value are rounded
to po10�5 and all p-values inferior to 0. 0083 survive Bonferroni
correction for multiple ROIs comparisons (p¼0.05/6
areas¼0.0083).

Physical dimension: number of letters

The number of letters composing each word could be suc-
cessfully predicted by a regression model in the early visual re-
gions BA17 (mean score¼0.45, po10–5), BA18 (mean score¼0.31,
po10–5) and BA19 (mean score¼0.21, po10–5). Likewise, the
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Fig. 3. Topography of perceptual and conceptual representations in the ventral path. (a) Lowermost: the regression model (scoring metric: Kendall tau) was able to predict
above chance the implied real-world size in four occipito-temporal areas. Middle: the partial correlation between neural similarity matrix and real–world size matrix, while
controlling for the other dimensions, is significant in primary visual areas (BA17). Uppermost: the six ROIs are colored according to the normalized partial correlation scores,
highlighting how the effect of the perceptual dimension is confined in occipital visual areas. (b) Lowermost: the binary classification model was able to predict above chance
the semantic category in four occipito-temporal areas (from BA17 to BA37). Middle: the partial correlation between neural similarity matrix and semantic category matrix is
significant in the occipito–temporal cortex (BA19 and BA37). Uppermost: information about semantic category appears to be coded in occipito-temporal areas, anteriorly
respect to the implied real-world size and posteriorly respect to the semantic cluster. (c) Lowermost: the multi-classification model was able to predict above chance the
semantic cluster in five occipito-temporal areas (from BA17 to BA20). Middle: the partial correlation between neural similarity matrix and semantic cluster matrix is
significant in anterior areas, from BA19 to BA38, peaking in BA20. Uppermost: the effect of semantic cluster gets progressively higher the more anterior the areas considered.
We are showing the average scores across subjects (no¼16) and error bars indicate the s.e.m. Statistical significance (*po0.05, **po0.001, ***po10�5) is computed with a
permutation test and very low p-value are rounded to po10�5. Exact p-values are reported in the text and **/*** survive Bonferroni correction (p¼0.05/6 areas¼0.0083).

V. Borghesani et al. / NeuroImage 143 (2016) 128–140 135
neural similarity computed from the pattern of activation of these
areas significantly correlated with the predicted similarity matrix
modelling the difference in number of letters between each word
pair: BA17 (mean score¼0.35, po10–5), BA18 (mean score¼0.13,
po10–5) and BA19 (mean score¼0.06, po10–5). More anterior
temporal regions ceased to reflect such physical dimension of the
visual stimulus, in line with the expected increasing invariance to
physical dimensions along the ventral stream. These results are
therefore a sound sanity check for our models (Fig. 2c).

Perceptual–semantic dimension: implied real word size

We then investigated the brain code for the real–world size of
the objects referred to by the words, to which we refer to as a
perceptual–semantic dimension (Fig. 3a). A regression model with
the rank of the sizes (equivalent to the log of the sizes) permitted
above chance prediction of the relative size in BA17 (mean
score¼0.07, p¼0.0006), BA18 (mean score¼0.05, p¼0.0086),
BA19 (mean score¼0.09, po10–5), and BA37 (mean score¼0.04,
p¼0.0086). Because in our stimuli implied real–word size and
semantic category were correlated (on average, tools were smaller
than animals) using decoding we were unable to determine if the
source of the information used by the decoder to solve the implied
real–world size regression problem was indeed related to the
implied–real world size, to the semantic category, or both. The
partial correlation RSA, on the contrary, could provide such in-
formation. Once we accounted for the conceptual effects (semantic
category and cluster), the similarity in the implied real–world size
significantly correlated with the neural similarity observed in
primary visual areas (BA17, mean score¼0.06, po10–5) and then
progressively decreased in more anterior areas (BA18, mean
score¼0.02, p¼0.0537, and BA19 mean score¼0.03, p¼0.0484)
(Fig. 3a).

Conceptual–semantic dimensions: semantic category and cluster

Next, we tested more conceptual aspects of our stimuli (Fig. 3b–
c): the semantic category (i.e. animals vs tools) and the sub–ca-
tegory semantic clusters (e.g. domesticated animals vs. wild ani-
mals). A binary classification model was able to predict above
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chance the words’ semantic category in four occipito–temporal
ROIs: BA17 (mean score¼0.54, p¼0.0008), BA18 (mean
score¼0.53, p¼0.0055), BA19 (mean score¼0.57, po10–5), BA37
(mean score¼0.56, po10–5). Again, because of the correlation
between semantic category and size, these results were further
qualified by partial correlation RSA, which showed that category
membership was increasingly correlated with brain activation as
we moved along the ventral path from posterior to anterior re-
gions (BA18 mean score¼0.02, p¼0.0558, BA 19 mean
score¼0.03, p¼0.0099), independently from the residual code for
size, reaching the peak in BA37 (mean score¼0.05, p¼0.0004).
Finally, using a multiclass classification model we could decode
the subtle semantic clustering of our words in five ROIs: BA17
(mean score¼0.14, p¼0.0126), BA18 (mean score¼0.13,
p¼0.0148), BA19 (mean score¼0.16, po10–5), BA37 (mean
score¼0.14, p¼0.0295), BA20 (mean score¼0.15, p¼0.0001).
These results were further qualified by partial correlation RSA,
which showed that semantic cluster membership, once accounted
for the other dimensions, was represented in the most anterior
areas of the temporal lobe (BA19 mean score¼0.04, p¼0.006,
BA37 mean score¼0.03, p¼0.0081), peaking in BA20 (mean
score¼0.06, po0.05).

Controls on low level physical dimensions

In order to demonstrate that our semantic effects (especially
those that we could recover from activity in early visual regions)
could not be explained by information present in the physical
appearance of the stimuli themselves, we applied all the afore-
mentioned decoding and partial correlation RSA analyses to the
images of the stimuli (i.e. the snapshots of the screens with the
words we presented to the subjects during the fMRI experiment).
Unsurprisingly, the only dimension that this analysis could recover
from such input was the number of letters composing each word:
decoding score¼0.74, po0.001; RSA score 0.23, po0.001 (for
implied real world size: decoding score¼0.12, p¼0.28; RSA
score¼�0.01, p¼0.62, for semantic category: decoding
score¼0.11, p¼0.30; RSA score¼0.05, p¼0.18, for cluster cate-
gory: decoding score¼0.08, p¼0.33; RSA score¼�0.05, p¼0.82).

We also explored if the variations in word length could explain
the effect of size in early visual areas. Although the predicted si-
milarity matrices for length and size were not correlated with each
other, because the effect of word length was very strong compared
to that of size, as a further control aiming at reducing the varia-
bility in length across our stimuli we re-run the partial correlation
analyses of size eliminating two stimuli, corresponding to the
longest (4 letters) and the shortest (9 letters) words. This partial
correlation RSA testing for the effect of size (corrected for length,
category and cluster) was smaller compared with the one run on
the full set of stimuli, but it remained significant (p.o0.05) in
BA17. As for the original analysis, this effect disappeared in more
anterior regions.

Interaction between semantic dimensions and ROIs

Our findings illustrate two clear postero–anterior gradients in
the neural response profile of the ventral visual path: posterior
occipital regions appear as coding for the visuo-perceptual se-
mantic property of the items (the implied average real word size),
irrespective to their semantic category, while as we moved ante-
riorly in the ventral stream, mid-anterior temporal regions dis-
criminate first between semantic categories and further anteriorly
between sub-categorical cluster in a way that is insensitive to their
visuo-perceptual property of size. Such an interaction between
semantic dimensions and our ROIs was explicitly tested with an
ANOVA (6 ROIs�3 dimensions). The results was highly significant:
F(10,150)¼4.48, po0.001, corroborating the differential con-
tribution of perceptual and conceptual semantic dimensions to the
pattern of brain activity in occipital and temporal areas. Across the
six ROIs, the three effects develop according to different trends:
implied real world size shows a significant (decreasing) linear
trend (F(1,15)¼23.92, po0.0001); semantic category a significant
quadratic trend (F(1,15)¼15.97, p¼0.001); semantic cluster a
marginal (increasing) linear trend (F(1,15)¼3.59, p¼0.07), not
significant likely due to the loss of signal/increased noise in BA38).

Standard pearson correlation RSA

Second, we verified the impact of the use of partial correlation
in RSA, and thus run the “standard” Pearson correlation RSA. This
revealed a pattern very close to decoding: due to the relation be-
tween implied real world size and semantic category/cluster the
three effects are intermingled and result in a less clean gradient
from physical (length of words: BA17 mean score¼0.34, po10–5,
BA18 mean score¼0.12, po10–5, BA19 mean score¼0.06,
p¼0.0202) and perceptual (implied real world size: BA17 mean
score¼0.62, p¼0.0133), to conceptual (semantic category: BA37
mean score¼0.05, p¼0.0446; semantic cluster: BA20 mean
score¼0.05, p¼0.0407) (Sup.Fig. 1).

Lateralization of the effects

Finally, when our ROIs were split in left vs right, the profile of
the 4 effects followed the same trend bilaterally: moving from
posterior to anterior along the ventral path physical (i.e., length of
words) and perceptual (e.g., implied real world size) effects de-
crease, while conceptual ones (i.e., semantic category and cluster)
increase (Sup.Fig. 2). On the left hemisphere, length of words:
BA17 mean score¼0.33, po10–5, BA18 mean score¼0.14, po10–5,
BA19 mean score¼0.05, p¼0.0001; implied real world size: BA17
mean score¼0.04, p¼0.0018, BA19 mean score¼0.03, p¼0.0102;
semantic category: BA18 mean score¼0.03, p¼0.0112, BA19 mean
score¼0.03, p¼0.012, BA37 mean score¼0.06, po10–5; semantic
cluster: BA19 mean score¼0.03, p¼0.0048, BA37 mean
score¼0.04, p¼0.0029, BA20 mean score¼0.05, p¼0.001. On the
right hemisphere, length of words: BA17 mean score¼0.25,
po10–5, BA18 mean score¼0.09, po10–5, BA19 mean score¼0.06,
po10–5; implied real world size: BA17 mean score¼0.06, po10–
5, BA18 mean score¼0.02, p¼0.0499; semantic category: BA19
mean score¼0.03, p¼0.0234; semantic cluster: BA19 mean
score¼0.03, p¼0.0134, BA20 mean score¼0.05, p¼0.0001, BA38
mean score¼0.04, p¼0.0036. It should be noticed that having
now 12 ROIs, the Bonferroni correction threshold is now 0.004
(p¼0.05/12 areas¼0.004).
Discussion

This study investigated the semantic representation of word
meaning along the ventral visual path during silent reading and
tested the hypothesis that perceptual semantic features of the
objects referred to by the words are encoded in brain regions that
are partially segregated from those encoding conceptual semantic
features. Our task, orthogonal to the dimensions of the semantic
space we investigated, ensured that subjects processed the words
at an individual level (as opposed to the category or cluster level),
and that the representations recovered in the brain activation
emerged spontaneously. Furthermore, since we used words in-
stead of pictures as stimuli, our results are free from any possible
low-level confound due to visual shape similarity (Rice et al.,
2014). We used a combination of multivariate decoding and partial
correlation RSA. In fact, while decoding only tests for the
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possibility to discriminate classes (without directly assessing in
which aspects those classes differ), partial correlation RSA directly
tests for the contribution of a given representational geometry
onto brain activity.

Implied real–world size information in primary visual areas

One surprising result of this study is that, during reading, early
visual areas appear to contain information relative to at least one
perceptual–semantic dimension of word meaning: the implied
real–world size of the items they refer to (Fig. 3a). This informa-
tion, however, is progressively lost towards anterior temporal re-
gions, which become more progressively involved in encoding
more abstract information such as semantic category and sub-
categorical cluster. Not surprisingly, if one had to look only at non-
partial correlation RSA or decoding, one would have observed
much more distributed effects, with size reaching significance also
in more anterior areas and category also in more posterior ones.
Having run partial RSA, however, we now know that this would
have been a spurious effect due to the correlation between size
and semantic category and cluster. Partial correlation RSA gives us
a cleaner picture of the contribution of this perceptual dimension
once accounting for the conceptual ones. In this respect, it is to be
noted that the surprising effect of size in early visual areas was
also present when we corrected for the effect of word length,
which, even though not significantly correlated with size (neither
at the level of the raw values nor at the level of the similarity
matrices) was not entirely un-related to it. Further, we could re-
trieve size-related information in BA17 even after we removed
from the analyses the two words that were most greatly variable
in length. These results suggest that early visual areas play a role in
semantics, and not only in low–level vision, and they are coherent
with recent studies indicating that activity in primary visual cortex
contains perceptual information even in the absence of sensory
stimulation (e.g., the prototypical color of objects presented as a
gray-scale image) (Bannert and Bartels, 2013) or in presence of
ambiguous stimuli (Vandenbroucke et al., 2014). Our results also
relate to the literature on mental imagery, which indicates com-
monalities between the neural substrates of perception and of
imagery (Farah, 1992; Kosslyn, 2001; Smith and Goodale, 2014). In
our experiment we neither explicitly prompted the use of mental
imagery nor did we inhibit it, thus we are neutral with respect to
the issue of whether the observed effects were related to imagery
or not. One way to approach the question in the future would be to
directly compare the neural representational geometries in early
visual cortices during reading (i.e. reading names of objects of
different sizes; the condition we have in the present study), with
that elicited during perception (i.e. seeing items of different sizes),
and mental imagery (i.e. imaging items of different sizes). The
recent success of a voxel-wise encoding model suggests that the
same low-level visual features are encoded during visual percep-
tion and mental imagery (Naselaris et al., 2015); however, further
research is needed to test: (1) whether they differ in representa-
tional granularity, as is the case for audition and auditory imagery
(Linke and Cusack, 2015); and crucially (2) whether similar results
are obtained when subjects are presented with symbolic stimuli,
i.e. words, instead of pictures. Despite this open issue, however,
our results indicate that activation in primary visual areas contains
information related to the real–word size of items even when the
items are not physically present but simply evoked by symbols.
Interestingly, the results of the preliminary behavioral feature
generation task we conducted indicate that subjects sponta-
neously and consistently report size as a key defining property of
both animal and tool words (averaging across items and subjects,
size-related features were reported 188 times for animals and 212
times for tools), while color, for example, was reported frequently
as a feature defining animals but much less for tools (554 times for
animals, 117 times for tools). Finally, while the scope of the re-
search was not to investigate the internal scale at which object
sizes are represented in the brain, because we computed our dis-
similarity matrix on the basis of the rank of the sizes, and because
the progression in sizes of our stimuli was roughly logarithmic, our
results are compatible with the idea that size is encoded in early
visual cortex according to a logarithmic scale (Konkle and Oliva,
2011).

It should be noticed that implied real world size is relatively
easily and objectively quantifiable, while other properties, such as
color, cannot easily be established for many stimuli. However, in
future studies we shall try to parametrize and thus model other
visual as well as non-visual sensory properties implied by nouns
(e.g., shape, sound) in order to investigate the degree of segrega-
tion across sensory regions of these properties. Concerning the
anatomy of the real-word size effect, previous literature has
shown the implication of lateral-occipital, inferotemporal, and
parahippocampal cortices (Konkle and Oliva, 2012; He et al., 2013).
The discrepancy between those studies and the current one can be
traced down to the numerous methodological differences:

1. Most studies used pictures as stimuli (Konkle and Oliva, 2012
studies 1 and 2), while we used words;

2. When they did not use pictures, but words, as we do, they en-
gaged subjects in tasks involving active size comparison (He
et al., 2013) or imagery of objects in their prototypical or
atypical size (Konkle and Oliva, 2012 studies 3), thus drawing
subject's attention on the size dimension. Instead, in our
experiment, subjects were asked to actively think of the whole
concept referred to by the words, with no specific focus on the
size dimension;

3. Moreover, previous studies compared objects that did not only
differ for average size but also belong to largely different se-
mantic categories (animals vs tools vs non-manipulable objects,
He et al., 2013), while we present results for the implied real
world size effect controlling for categorical differences;

4. Finally, all the aforementioned studies identified the effect of
size using univariate analyses, while in our experiment there
was no effect, neither in V1 nor in other regions at the uni-
variate level. Multivariate analyses of those data could reveal if
additional information could retrieved from brain activity, and
especially from primary visual areas, when the distributed
pattern of activity is considered.

Conceptual taxonomic information is mainly encoded in mid and
anterior temporal areas

A good number of neuropsychological and neuroimaging
findings now converge in indicating a crucial role for ATL in the
conceptual semantic processing. Herpes simplex encephalitis with
widespread lateral and medial temporal lobe damage is associated
with semantic category–specific deficits (Lambon Ralph et al.,
2007). Moreover, semantic dementia, a neurodegenerative dis-
order whose gray and white matter atrophy starts in ATL, shows
progressive decline in semantic representations spanning all sti-
mulus presentation modalities (visual, auditory, verbal and pic-
torial) suggesting a key role of ATL in amodal semantic processing.
Neuroimaging studies focusing on regions in anterior temporal
cortex which are activated during semantic tasks also show that
semantic proximity of words belonging to the same semantic ca-
tegory correlates with the patterns of activity in left perirhinal
cortex (Bruffaerts et al., 2013). Virtual lesions through TMS and
cortical stimulation also indicate that interfering with ATL gen-
erates trouble in a variety of semantic tasks (Pobric et al., 2010;
Shimotake et al., 2014). These findings are compatible with the
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idea that the anterior temporal cortex acts as a hub region where
single perceptual sematic features are integrated to give rise to
conceptual representations. In the current experiment we show
that activity in the mid and anterior temporal cortex (but not in
more posterior occipito/temporal regions) reflects categorical and
sub-categorical conceptual clustering of the words, and is thus in
line with the aforementioned literature. However, because in the
current study we investigated at the same time conceptual and
perceptual semantic dimensions of the words we presented, we
could directly demonstrate that the ATL codes for the conceptual
dimensions of the semantic space (category and sub-categorical
cluster) in a way that is independent from the single perceptual
feature of size. If we had used decoding results only, we would
have mistakenly concluded that categorical semantic information
is available already in posterior occipital areas. Instead, by partial
correlation RSA we can start teasing apart the multiple compo-
nents of complex representational spaces that characterize word
meaning. The finding that even once accounting for the difference
across animals and tools in their average size there is enough in-
formation in the ATL to discriminate their category and sub-cate-
gorical cluster, even if admittedly at a coarse anatomical scale,
enriches our understanding of the representational geometry of
the anterior part of the temporal lobe. In fact, they complement
previous evidence of object category effects in posterior middle/
inferior temporal gyrus and ventral temporal cortex (similar to our
semantic categories) (Fairhall and Caramazza, 2013), and of se-
mantic similarity effect in left perirhinal cortex (similar to our
semantic cluster) (Bruffaerts et al., 2013).

Representational shift along the ventral stream

The third major finding of our study is the observation of two
progressive gradients of semantic coding as we move along the
ventral stream (Fig. 3): from perceptual to conceptual and from
categorical to sub-categorical.

While visuo–perceptual semantic information appears to be
preferentially encoded within occipital visual areas, anterior
temporal areas become progressively invariant to such perceptual
features, and at the same time progressively more sensitive to the
conceptual taxonomic dimensions of the semantic space: the se-
mantic category and the sub-categorical cluster of the words.
While a similar posterior–to–anterior gradient of abstraction –from
physical to perceptual to conceptual information coding– has been
previously reported in the domain of object recognition (Peelen
and Caramazza, 2012; Devereux et al., 2013; Carlson et al., 2014;
Clarke and Tyler, 2014), to our knowledge no study has previously
investigated at the same time physical, perceptual and conceptual
dimensions of word meaning. The presence of a semantic gradient
along the occipito–temporal axis was first suggested by clinical
data: patients with vascular damage in the territory of the pos-
terior cerebral artery present fine–grained categorical deficits (e.g.
disproportionate failures for biological categories) only if their
lesion extend to the anterior temporal region, beyond Talairach's
y–coordinate –32 (Capitani et al., 2009). We also observed an in-
creasingly fine-grained clusterization of words as we moved along
the anterior temporal lobe: while mid-level temporal regions re-
present the gross semantic category of the words (animals vs.
tools), more anterior regions (BA20 and BA38) become progres-
sively sensitive to the sub-categorical clustering, allowing to dis-
tinguish words related, for example, to domesticated land animals,
wild land animals, sea mammals, and sea non-mammals. A spec-
ulative idea is that the nature of the representation in the tem-
poral lobe could be progressively more fine–grained (i.e. reflecting
categorical membership in the posterior portion and single item
identity in more anterior one). This hypothesis would also fit well
with the report of “concept cells”, coding for individual items
though with a very high degree of invariance (even across sym-
bolic and pictorial presentations) in the medial areas of the human
anterior temporal cortex (Quiroga, 2012). This representational
shift should be interpreted in light of the coarse anatomical scales
we used and better qualified by furthers studies tapping the spe-
cific representational granularity (or hierarchy) of the different
perceptual and conceptual dimensions involved in word meaning
in more precisely defined brain regions.

A multidimensional semantic neural space: theoretical implications

Our ROIs encompass several functionally defined areas re-
sponding preferentially to different categories of visual stimuli,
such as objects (Lerner, 2001), bodies (Downing et al., 2007), faces
(Peelen and Downing, 2005) and words (Dehaene and Cohen,
2011). Beside this macroscopic parcellation based on categorical
preference, other more abstract dimensions, such as animacy (Sha
et al., 2014) and real world size (Konkle and Oliva, 2012) have been
suggested as additional organizing principles of object processing
in the ventral visual path. In our study we could retrieve size and
category information from the activity of occipito–temporal areas,
but only at the multivariate level, indicating that the activation of
this information during passive word reading is more subtle and
distributed compared to that directly evoked by looking at the
pictures of the stimuli. Moreover, the discrepancy between find-
ings implicating down-stream regions in the processing of size-
related information (Konkle and Oliva, 2012) with our observation
of an effect already in early, up-stream, regions could tentatively
be explained in terms of differences in task requirements between
the two studies (Martin, 2015). Generally speaking, the different
perceptual and conceptual dimensions characterizing objects
(Huth et al., 2012) and words (Just et al., 2010) semantics appear to
be coded in a highly distributed fashion, encompassing visual and
nonvisual cortices (Fernandino et al., 2015b). All this evidence
contributes to the description of a distributed and multi-
dimensional semantic neural space, partially answering the
question of how word meaning is encoded in the brain. A current
debate, of interest for some, relates to the question of whether the
format of the representation of the different stimulus features in
the various brain regions is abstract or embodied (Glenberg, 2015;
Mahon, 2015). Our study, by investigating the representational
geometry of word meaning in different brain regions of the ventral
stream elucidates where and how, in the brain, semantic in-
formation is encoded. However, it remains neutral as to its format.
In this respect, we agree with A. Martin (2015) that given the
absence of a consensus on how to establish the format of a re-
presentation, currently no experimental setting seems to be able
to actually tackle this problem. Nevertheless, we think that the
double dissociation between coded properties and brain regions
that we observed is a convincing argument in favor of a distributed
theory of semantic processing that accepts the key role of the
anterior temporal lobe in conceptual knowledge and that at the
same time recognizes an important part played by sensory-motor
areas in encoding perceptual components of meaning.
Conclusion

In conclusion, our results indicate that different aspects of word
meaning are encoded in a distributed way across different brain
areas. Perceptual semantic aspects, such as the implied real word
size appear to be encoded, independently from higher order se-
mantic features, primarily in early sensory areas, which represent
the aspects of semantic information that are isomorphic with the
input they typically process. Conceptual aspects, such as the ca-
tegorical cluster and sub-clusters, appear encoded primarily in
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anterior temporal areas, which code taxonomic information in a
way that is independent from single perceptual features. Hence,
both sensory and association areas appear to play an important
role by coding for specific and complementary perceptual and
conceptual dimensions of the semantic space.
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