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Summary

Optimization methods need to be adapted to the parallel setting
to leverage modern computer architectures.

Highly efficient variants of stochastic gradient descent have been
recently proposed, such as Hogwild [1], Kromagnon [2],
ASAGA [3].

They assume that the objective function is smooth, so are
inapplicable to problems such as Lasso, optimization with convex
constraints, etc.

Main contributions:

1. Sparse Proximal SAGA, a sparse variant of the
linearly-convergent proximal SAGA algorithm.

2. ProxASAGA, the first parallel asynchronous variance-reduced
method that supports nonsmooth composite objective functions.

Problem Setting

Objective: develop parallel asynchronous method for problems of
the form

minimize
x∈Rp

1
n

∑n
i=1 fi(x) + h(x) ,

• fi is differentiable with L-Lipschitz gradient.

• h is block-separable (h(x) =
∑

B hB([x]B)) and “simple” in

the sense that we have access to

proxγh
def
= argminx γh(x) + 1

2‖x− z‖
2 .

=⇒ includes Lasso, group Lasso or box constraints.

Variance-reduced stochastic gradient methods are natural can-
didates due to their state of the art performance on these problems
and recent asynchronous variants.

The SAGA algorithm [4] maintains current iterate x ∈ Rp and
historical gradients α ∈ Rn×p. At each iteration, sample i ∈
{1, . . . , n} and compute (x+,α+) as

x+ = proxγh(x− γ(∇fi(x)−αi +α)) ; α+
i = ∇fi(x) .

Difficulty of a Composite Extension

• Existing methods exhibit best performance when updates are
sparse.

• Even in the presence of sparse gradients, the SAGA update is
not sparse due to the presence of α and prox.

• Existing convergence proofs bound noise from asynchrony using
the Lipschitz constant of the gradient. This property does not
extend to composite case.

A New Sequential Algorithm: Sparse Proximal SAGA

The algorithm relies on the following quantities
• Extended support Ti: set of blocks that intersect with ∇fi.

Ti
def
= {B : supp(∇fi) ∩B 6= ∅, B ∈ B}

• For each block B ∈ B, dB
def
= n/nB, where

nB :=
∑

i1{B ∈ Ti} is the number of Ti that contain B.

• Di is a diagonal matrix defined block-wise as

[Di]B,B
def
= dB1{B ∈ Ti}I|B|.

• ϕi is a block-wise reweighting of h: ϕi
def
=
∑

B∈Ti dBhB(x)

Justification. The following properties are verified

ϕi(x) is zero outside Ti Dix is zero outside Ti (sparsity)

Eiϕi = h EiDi = I (unbiasedness)

Algorithm. As SAGA, it maintains current iterate x ∈ Rp

and table of historical gradients α ∈ Rn×p. At each iteration,
it samples an index i ∈ {1, . . . , n} and computes next iterate
(x+,α+) as

vi = ∇fi(x)−αi +Diα

x+ = proxγϕi
(
x− γvi

)
; α+

i = ∇fi(x)

Features

• Per Iteration cost in O(|Ti|).

• Easy to implement (compared to the lagged update
approach [5]).

• Amenable to parallelization.

Convergence Analysis

For step size γ = 1
5L and f µ-strongly convex (µ > 0), Sparse

Proximal SAGA converges geometrically in expectation. At it-
eration t we have

E‖xt− x∗‖2 ≤ (1− 1
5 min{1

n,
1
κ})

tC0 ,

with C0 = ‖x0−x∗‖2 + 1
5L2

∑n
i=1 ‖α0

i −∇fi(x∗)‖2 and κ = L
µ

(condition number).

Implications

• Same convergence rate than SAGA with cheaper updates.

• In the “big data regime” (n ≥ κ): rate in O(1/n).

• In the “ill-conditioned regime” (n ≤ κ): rate in O(1/κ).

• Adaptivity to strong convexity, i.e., no need to know strong
convexity parameter to obtain linear convergence.

A New Parallel Algorithm: Proximal Asynchronous
SAGA (ProxASAGA)

Proximal Asynchronous SAGA (ProxASAGA) runs Sparse Prox-
imal SAGA asynchornously and without locks and updates x,
α and α in shared memory.

All read/write operations to shared memory are inconsistent,
i.e., no vector-level locks while reading/writing.

1: keep doing in parallel
2: Sample i uniformly in {1, ..., n}
3: [ x̂ ]Ti = inconsistent read of x on Ti
4: α̂i = inconsistent read of αi

5: [α ]Ti = inconsistent read of α on Ti
6: [ δα ]Si = [∇fi(x̂)]Si − [α̂i]Si
7: [ v̂ ]Ti = [δα ]Ti + [Diα ]Ti
8: [ δx ]Ti = [proxγϕi(x̂− γv̂)]Ti − [x̂]Ti
9: for B in Ti do

10: for b in B do
11: [x ]b← [x ]b + [ δx ]b . atomic
12: if b ∈ supp(∇fi) then
13: [α ]b← [α]b + 1/n[δα]b . atomic
14: end if
15: end for
16: end for
17: αi← ∇fi(x̂) (scalar update) . atomic
18: end parallel loop

Perturbed Iterate Framework

Problem: Analysis of asynchronous parallel algorithms is hard.

Solution: Cast them as sequential algorithms working on per-
turbed inputs. Distinguish:

• x̂t: inconsistent vector. Counter t is incremented when a
core finishes reading the parameters (after read labeling [3]).

• xt: the virtual iterate defined by xt+1
def
= xt− γgt with

g(x,v, i) = 1
γ

(
x̂t− proxγϕi(x̂t− γv̂it)

)
.

Interpret x̂t as a noisy version of xt due to asynchrony. Gen-
eralization of perturbed iterate framework [2, 3] to composite
objectives.

Analysis preliminaries

Definition (measure of sparsity). Let ∆ := maxB∈B |{i :
Ti 3 B}|/n. This is the normalized maximum number of times
that a block appears in the extended support. We always have
1/n ≤ ∆ ≤ 1.

Definition (delay bound). τ is a uniform bound on the
maximum delay between two iterations processed concurrently.

Convergence guarantee of ProxASAGA

Suppose τ ≤ 1
10
√

∆
. Then:

• If κ ≥ n, then with step size γ = 1/36L, ProxASAGA converges
geometrically with rate factor Ω(1

κ).
• If κ < n, then using the step size γ = 1/36nµ, ProxASAGA

converges geometrically with rate factor Ω(1
n).

In both cases, the convergence rate is the same as Sparse Proximal
SAGA =⇒ ProxASAGA is linearly faster up to constant factor.
In both cases the step size does not depend on τ .

If τ ≤ 6κ, a universal step size of Θ(1/L) achieves a similar rate
than Sparse Proximal SAGA, making it adaptive to local strong
convexity (knowledge of κ not required).

Experimental results

Comparison on 3 large-scale datasets on an elastic-net regularized
logistic regression model:

minimize
x

1
n

∑n
i=1 log

(
1 + exp(−biaᵀ

ix)
)

+ λ1

2 ‖x‖
2
2 + λ2‖x‖1 ,

Dataset n p density L ∆
KDD 2010 19,264,097 1,163,024 10−6 28.12 0.15
KDD 2012 149,639,105 54,686,452 2× 10−7 1.25 0.85
Criteo 45,840,617 1,000,000 4× 10−5 1.25 0.89

Highlights: ProxASAGA significantly outperforms existing
methods, significant speedup (6x to 12x) over the sequential
version.
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