
Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization
Fabian Pedregosa†], Rémi Leblond†, Simon Lacoste–Julien?

†INRIA and École Normale Supérieure, Paris, France.]Currently at UC Berkeley ?MILA and DIRO, Université de Montréal, Canada

Summary

Optimization methods need to be adapted to the parallel setting
to leverage modern computer architectures.

Highly efficient variants of stochastic gradient descent have been
recently proposed, such as Hogwild [1], Kromagnon [2],
ASAGA [3].

They assume that the objective function is smooth, so are
inapplicable to problems such as Lasso, optimization with convex
constraints, etc.

Main contributions:

1. Sparse Proximal SAGA, a sparse variant of the
linearly-convergent proximal SAGA algorithm.

2. ProxASAGA, the first parallel asynchronous variance-reduced
method that supports nonsmooth composite objective functions.

Problem Setting

Objective: develop parallel asynchronous method for problems of
the form

minimize
x∈Rp

1
n

∑n
i=1 fi(x) + h(x) ,

• fi is differentiable with L-Lipschitz gradient.

• h is block-separable (h(x) =
∑

B hB([x]B)) and “simple” in

the sense that we have access to

proxγh
def
= argminx γh(x) + 1

2‖x− z‖
2 .

=⇒ includes Lasso, group Lasso or box constraints.

Variance-reduced stochastic gradient methods are natural can-
didates due to their state of the art performance on these problems
and recent asynchronous variants.

The SAGA algorithm [4] maintains current iterate x ∈ Rp and
historical gradients α ∈ Rn×p. At each iteration, sample i ∈
{1, . . . , n} and compute (x+,α+) as

x+ = proxγh(x− γ(∇fi(x)−αi +α)) ; α+
i = ∇fi(x) .

Difficulty of a Composite Extension

• Existing methods exhibit best performance when updates are
sparse.

• Even in the presence of sparse gradients, the SAGA update is
not sparse due to the presence of α and prox.

• Existing convergence proofs bound noise from asynchrony using
the Lipschitz constant of the gradient. This property does not
extend to composite case.

A New Sequential Algorithm: Sparse Proximal SAGA

The algorithm relies on the following quantities
• Extended support Ti: set of blocks that intersect with ∇fi.

Ti
def
= {B : supp(∇fi) ∩B 6= ∅, B ∈ B}

• For each block B ∈ B, dB
def
= n/nB, where

nB :=
∑

i1{B ∈ Ti} is the number of Ti that contain B.

• Di is a diagonal matrix defined block-wise as

[Di]B,B
def
= dB1{B ∈ Ti}I|B|.

• ϕi is a block-wise reweighting of h: ϕi
def
=
∑

B∈Ti dBhB(x)

Justification. The following properties are verified

ϕi(x) is zero outside Ti Dix is zero outside Ti (sparsity)

Eiϕi = h EiDi = I (unbiasedness)

Algorithm. As SAGA, it maintains current iterate x ∈ Rp

and table of historical gradients α ∈ Rn×p. At each iteration,
it samples an index i ∈ {1, . . . , n} and computes next iterate
(x+,α+) as

vi = ∇fi(x)−αi +Diα

x+ = proxγϕi
(
x− γvi

)
; α+

i = ∇fi(x)

Features

• Per Iteration cost in O(|Ti|).

• Easy to implement (compared to the lagged update
approach [5]).

• Amenable to parallelization.

Convergence Analysis

For step size γ = 1
5L and f µ-strongly convex (µ > 0), Sparse

Proximal SAGA converges geometrically in expectation. At it-
eration t we have

E‖xt− x∗‖2 ≤ (1− 1
5 min{1

n,
1
κ})

tC0 ,

with C0 = ‖x0−x∗‖2 + 1
5L2

∑n
i=1 ‖α0

i −∇fi(x∗)‖2 and κ = L
µ

(condition number).

Implications

• Same convergence rate than SAGA with cheaper updates.

• In the “big data regime” (n ≥ κ): rate in O(1/n).

• In the “ill-conditioned regime” (n ≤ κ): rate in O(1/κ).

• Adaptivity to strong convexity, i.e., no need to know strong
convexity parameter to obtain linear convergence.

A New Parallel Algorithm: Proximal Asynchronous
SAGA (ProxASAGA)

Proximal Asynchronous SAGA (ProxASAGA) runs Sparse Prox-
imal SAGA asynchornously and without locks and updates x,
α and α in shared memory.

All read/write operations to shared memory are inconsistent,
i.e., no vector-level locks while reading/writing.

1: keep doing in parallel
2: Sample i uniformly in {1, ..., n}
3: [x̂]Ti = inconsistent read of x on Ti
4: α̂i = inconsistent read of αi

5: [α]Ti = inconsistent read of α on Ti
6: [δα]Si = [∇fi(x̂)]Si − [α̂i]Si
7: [v̂]Ti = [δα]Ti + [Diα]Ti
8: [δx]Ti = [proxγϕi(x̂− γv̂)]Ti − [x̂]Ti
9: for B in Ti do

10: for b in B do
11: [x]b← [x]b + [δx]b . atomic
12: if b ∈ supp(∇fi) then
13: [α]b← [α]b + 1/n[δα]b . atomic
14: end if
15: end for
16: end for
17: αi← ∇fi(x̂) (scalar update) . atomic
18: end parallel loop

Perturbed Iterate Framework

Problem: Analysis of asynchronous parallel algorithms is hard.

Solution: Cast them as sequential algorithms working on per-
turbed inputs. Distinguish:

• x̂t: inconsistent vector. Counter t is incremented when a
core finishes reading the parameters (after read labeling [3]).

• xt: the virtual iterate defined by xt+1
def
= xt− γgt with

g(x,v, i) = 1
γ

(
x̂t− proxγϕi(x̂t− γv̂it)

)
.

Interpret x̂t as a noisy version of xt due to asynchrony. Gen-
eralization of perturbed iterate framework [2, 3] to composite
objectives.

Analysis preliminaries

Definition (measure of sparsity). Let ∆ := maxB∈B |{i :
Ti 3 B}|/n. This is the normalized maximum number of times
that a block appears in the extended support. We always have
1/n ≤ ∆ ≤ 1.

Definition (delay bound). τ is a uniform bound on the
maximum delay between two iterations processed concurrently.

Convergence guarantee of ProxASAGA

Suppose τ ≤ 1
10
√

∆
. Then:

• If κ ≥ n, then with step size γ = 1/36L, ProxASAGA converges
geometrically with rate factor Ω(1

κ).
• If κ < n, then using the step size γ = 1/36nµ, ProxASAGA

converges geometrically with rate factor Ω(1
n).

In both cases, the convergence rate is the same as Sparse Proximal
SAGA =⇒ ProxASAGA is linearly faster up to constant factor.
In both cases the step size does not depend on τ .

If τ ≤ 6κ, a universal step size of Θ(1/L) achieves a similar rate
than Sparse Proximal SAGA, making it adaptive to local strong
convexity (knowledge of κ not required).

Experimental results

Comparison on 3 large-scale datasets on an elastic-net regularized
logistic regression model:

minimize
x

1
n

∑n
i=1 log

(
1 + exp(−biaᵀ

ix)
)

+ λ1

2 ‖x‖
2
2 + λ2‖x‖1 ,

Dataset n p density L ∆
KDD 2010 19,264,097 1,163,024 10−6 28.12 0.15
KDD 2012 149,639,105 54,686,452 2× 10−7 1.25 0.85
Criteo 45,840,617 1,000,000 4× 10−5 1.25 0.89

Highlights: ProxASAGA significantly outperforms existing
methods, significant speedup (6x to 12x) over the sequential
version.

References

1. Niu, F., Recht, B., Re, C. & Wright, S. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. in NIPS (2011).

2. Mania, H. et al. Perturbed iterate analysis for asynchronous stochastic
optimization. SIAM Journal on Optimization (2017).

3. Leblond, R., Pedregosa, F. & Lacoste-Julien, S. ASAGA: asynchronous
parallel SAGA. AISTATS (2017).

4. Defazio, A. et al. SAGA: A fast incremental gradient method with support for
non-strongly convex composite objectives. in NIPS (2014).

5. Schmidt, M., Le Roux, N. & Bach, F. Minimizing finite sums with the
stochastic average gradient. Mathematical Programming (2016).

http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
https://doi.org/10.1137/16M1057000
https://doi.org/10.1137/16M1057000
https://arxiv.org/abs/1606.04809v2
https://arxiv.org/abs/1606.04809v2
https://arxiv.org/abs/1407.0202
https://arxiv.org/abs/1407.0202
http://dx.doi.org/10.1007/s10107-016-1030-6
http://dx.doi.org/10.1007/s10107-016-1030-6

