[†]INRIA and École Normale Supérieure, Paris, France. [‡]Currently at UC Berkeley *MILA and DIRO, Université de Montréal, Canada

Summary

Optimization methods need to be adapted to the parallel setting to leverage modern computer architectures.

Highly efficient variants of stochastic gradient descent have been recently proposed, such as Hogwild [1], Kromagnon [2], ASAGA [3].

They assume that the objective function is smooth, so are inapplicable to problems such as Lasso, optimization with convex constraints, etc.

Main contributions:

- Sparse Proximal SAGA, a sparse variant of the linearly-convergent proximal SAGA algorithm.
- 2. **ProxASAGA**, the first parallel asynchronous variance-reduced method that supports *nonsmooth* composite objective functions.

Problem Setting

Objective: develop parallel asynchronous method for problems of the form

$$\min_{\boldsymbol{x} \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{x}) + h(\boldsymbol{x})$$

- f_i is differentiable with L-Lipschitz gradient.
- h is block-separable $(h(x) = \sum_B h_B([x]_B))$ and "simple" in the sense that we have access to

 $\mathbf{prox}_{\gamma h} \stackrel{\text{def}}{=} \mathbf{argmin}_{\boldsymbol{x}} \gamma h(\boldsymbol{x}) + \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{z}\|^2$.

 \implies includes Lasso, group Lasso or box constraints.

Variance-reduced stochastic gradient methods are natural candidates due to their state of the art performance on these problems and recent asynchronous variants.

The SAGA algorithm [4] maintains current iterate $m{x} \in \mathbb{R}^p$ and historical gradients $oldsymbol{lpha} \in \mathbb{R}^{n imes p}$. At each iteration, sample $i \in$ $\{1,\ldots,n\}$ and compute $(oldsymbol{x}^+,oldsymbol{lpha}^+)$ as

 $\boldsymbol{x}^{+} = \mathbf{prox}_{\gamma h}(\boldsymbol{x} - \gamma(\nabla f_i(\boldsymbol{x}) - \boldsymbol{\alpha}_i + \overline{\boldsymbol{\alpha}})); \ \boldsymbol{\alpha}_i^{+} = \nabla f_i(\boldsymbol{x}) \ .$

Difficulty of a Composite Extension

- Existing methods exhibit best performance when updates are sparse.
- Even in the presence of sparse gradients, the SAGA update is not sparse due to the presence of $\overline{\alpha}$ and prox.
- Existing convergence proofs bound noise from asynchrony using the Lipschitz constant of the gradient. This property does not extend to composite case.

Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization

Fabian Pedregosa^{† #}, Rémi Leblond[†], Simon Lacoste–Julien^{*}

A New Sequential Algorithm: Sparse Proximal SAGA

- The algorithm relies on the following quantities
- Extended support T_i : set of blocks that intersect with ∇f_i .
 - $T_i \stackrel{\mathsf{def}}{=} \{ B : \mathsf{supp}(\nabla f_i) \cap B \neq \emptyset, \ B \in \mathcal{B} \}$
- For each block $B \in \mathcal{B}$, $d_B \stackrel{\text{def}}{=} n/n_B$, where $n_B := \sum_i \mathbb{1} \{ B \in T_i \}$ is the number of T_i that contain B.
- D_i is a diagonal matrix defined block-wise as $[\boldsymbol{D}_i]_{B,B} \stackrel{\text{def}}{=} d_B \mathbb{1} \{ B \in T_i \} \boldsymbol{I}_{|B|}.$
- φ_i is a block-wise reweighting of h: $\varphi_i \stackrel{\text{def}}{=} \sum_{B \in T_i} d_B h_B(\boldsymbol{x})$

Justification. The following properties are verified

 $\varphi_i(\boldsymbol{x})$ is zero outside T_i $\boldsymbol{D}_i \boldsymbol{x}$ is zero outside T_i (sparsity) (unbiasedness) $\mathbb{E}_i \, oldsymbol{D}_i = oldsymbol{I}$ $\mathbb{E}_i \varphi_i = h$

Algorithm. As SAGA, it maintains current iterate $m{x} \in \mathbb{R}^p$ and table of historical gradients $\boldsymbol{\alpha} \in \mathbb{R}^{n \times p}$. At each iteration, it samples an index $i \in \{1, \ldots, n\}$ and computes next iterate $(oldsymbol{x}^+,oldsymbol{lpha}^+)$ as

$$oldsymbol{v}_i =
abla f_i(oldsymbol{x}) - oldsymbol{lpha}_i + oldsymbol{D}_i \overline{oldsymbol{lpha}} \ oldsymbol{x}^+ = \mathbf{prox}_{\gamma arphi_i} \left(oldsymbol{x} - \gamma oldsymbol{v}_i
ight); \ oldsymbol{lpha}_i^+ =
abla f_i(oldsymbol{x})$$

Features

- Per Iteration cost in $\mathcal{O}(|T_i|)$.
- Easy to implement (compared to the lagged update approach [5]).
- Amenable to parallelization.

Convergence Analysis

For step size $\gamma = \frac{1}{5L}$ and $f \mu$ -strongly convex ($\mu > 0$), Sparse Proximal SAGA converges geometrically in expectation. At iteration t we have

$$\mathbb{E} \| \boldsymbol{x}_t - \boldsymbol{x}^* \|^2 \le (1 - \frac{1}{5} \min\{\frac{1}{n}, \frac{1}{\kappa}\})^t C_0 ,$$

with $C_0 = \| m{x}_0 - m{x}^* \|^2 + rac{1}{5L^2} \sum_{i=1}^n \| m{lpha}_i^0 -
abla f_i(m{x}^*) \|^2$ and $\kappa = rac{L}{\mu}$ (condition number).

Implications

- Same convergence rate than SAGA with cheaper updates.
- In the "big data regime" $(n \ge \kappa)$: rate in $\mathcal{O}(1/n)$.
- In the "ill-conditioned regime" $(n \le \kappa)$: rate in $\mathcal{O}(1/\kappa)$.
- Adaptivity to strong convexity, i.e., no need to know strong convexity parameter to obtain linear convergence.

A New Parallel Algorithm: Proximal Asynchronous SAGA (ProxASAGA)

Proximal Asynchronous SAGA (ProxASAGA) runs Sparse Proximal SAGA asynchornously and without locks and updates x, α and $\overline{\alpha}$ in shared memory.

All read/write operations to shared memory are *inconsistent*, i.e., no vector-level locks while reading/writing.

keep doing in parallel Sample i uniformly in $\{1, ..., n\}$ $[\hat{x}]_{T_i} = \text{inconsistent read of } x \text{ on } T_i$ $\hat{\boldsymbol{\alpha}}_i = \mathsf{inconsistent} \mathsf{ read} \mathsf{ of } \boldsymbol{\alpha}_i$ $[\overline{\alpha}]_{T_i} = \text{inconsistent read of } \overline{\alpha} \text{ on } T_i$ $[\delta \boldsymbol{\alpha}]_{S_i} = [\nabla f_i(\hat{\boldsymbol{x}})]_{S_i} - [\hat{\boldsymbol{\alpha}}_i]_{S_i}$ $[\hat{\boldsymbol{v}}]_{T_i} = [\delta \boldsymbol{\alpha}]_{T_i} + [\boldsymbol{D}_i \overline{\boldsymbol{\alpha}}]_{T_i}$ $[\delta \boldsymbol{x}]_{T_i} = [\mathbf{prox}_{\gamma \varphi_i} (\hat{\boldsymbol{x}} - \gamma \hat{\boldsymbol{v}})]_{T_i} - [\hat{\boldsymbol{x}}]_{T_i}$ for B in T_i do for b in B do $[\boldsymbol{x}]_b \leftarrow [\boldsymbol{x}]_b + [\delta \boldsymbol{x}]_b$ ⊳ atomic if $b \in \operatorname{supp}(\nabla f_i)$ then $[\overline{\boldsymbol{\alpha}}]_b \leftarrow [\overline{\boldsymbol{\alpha}}]_b + 1/n[\delta \boldsymbol{\alpha}]_b$ ⊳ atomic end if end for end for $\boldsymbol{\alpha}_i \leftarrow \nabla f_i(\hat{\boldsymbol{x}})$ (scalar update) ⊳ atomic 18: end parallel loop

Perturbed Iterate Framework

Problem: Analysis of asynchronous parallel algorithms is *hard*.

Solution: Cast them as sequential algorithms working on *perturbed* inputs. Distinguish:

- $\hat{\boldsymbol{x}}_t$: inconsistent vector. Counter t is incremented when a core *finishes reading* the parameters (after read labeling [3]).
- \boldsymbol{x}_t : the virtual iterate defined by $\boldsymbol{x}_{t+1} \stackrel{\text{def}}{=} \boldsymbol{x}_t \gamma \boldsymbol{g}_t$ with $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{v}, i) = \frac{1}{\gamma} (\hat{\boldsymbol{x}}_t - \mathbf{prox}_{\gamma \varphi_i} (\hat{\boldsymbol{x}}_t - \gamma \hat{\boldsymbol{v}}_{i_t})).$

Interpret \hat{x}_t as a noisy version of x_t due to asynchrony. Generalization of perturbed iterate framework [2, 3] to composite objectives.

Analysis preliminaries

Definition (measure of sparsity). Let $\Delta := \max_{B \in \mathcal{B}} |\{i : M \in \mathcal{B} \mid \{i : M \in \mathcal{B} \mid \{$ $T_i \ni B \} | /n$. This is the normalized maximum number of times that a block appears in the extended support. We always have $1/n \leq \Delta \leq 1.$

Definition (delay bound). τ is a uniform bound on the maximum delay between two iterations processed concurrently.

Convergence guarantee of ProxASAGA

Suppose $\tau \leq \frac{1}{10\sqrt{\Delta}}$. Then:

- If $\kappa \geq n$, then with step size $\gamma = 1/36L$, ProxASAGA converges geometrically with rate factor $\Omega(\frac{1}{\kappa})$.
- If $\kappa < n$, then using the step size $\gamma = 1/36n\mu$, ProxASAGA converges geometrically with rate factor $\Omega(\frac{1}{n})$.

In both cases, the convergence rate is the same as Sparse Proximal SAGA \implies ProxASAGA is **linearly faster** up to constant factor. In both cases the step size does not depend on τ .

If $\tau \leq 6\kappa$, a universal step size of $\Theta(1/L)$ achieves a similar rate than Sparse Proximal SAGA, making it adaptive to local strong convexity (knowledge of κ not required).

Experimental results

Comparison on 3 large-scale datasets on an elastic-net regularized logistic regression model:

Highlights: ProxASAGA significantly outperforms existing methods, significant speedup (6x to 12x) over the sequential version.

References

- Niu, F., Recht, B., Re, C. & Wright, S. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. in NIPS (2011).
- Mania, H. et al. Perturbed iterate analysis for asynchronous stochastic optimization. SIAM Journal on Optimization (2017).
- Leblond, R., Pedregosa, F. & Lacoste-Julien, S. ASAGA: asynchronous parallel SAGA. AISTATS (2017).
- Defazio, A. et al. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. in NIPS (2014).
- Schmidt, M., Le Roux, N. & Bach, F. Minimizing finite sums with the stochastic average gradient. Mathematical Programming (2016).