
On Implicit Bias in Overparameterized Bilevel Optimization

Paul Vicol 1 2 Jonathan Lorraine 1 2 Fabian Pedregosa 3 David Duvenaud 1 2 Roger Grosse 1 2

Abstract
Many problems in machine learning can be cast
in the framework of bilevel optimization (BLO),
including hyperparameter optimization, meta-
learning, and dataset distillation. Bilevel prob-
lems involve inner and outer parameters, each op-
timized for its own objective. Often, at least one
of the two levels is underspecified and there are
multiple ways to choose among equivalent optima.
Inspired by recent studies on the implicit bias of
optimization methods, we investigate the implicit
bias of different gradient-based algorithms for
jointly optimizing the inner and outer parameters.
We delineate two standard BLO methods—cold-
start and warm-start BLO—and show that the
converged solution or long-run behavior depends
to a large degree on these and other algorithmic
choices, such as the hypergradient approximation.
We also show that the solutions from warm-start
BLO can encode a surprising amount of infor-
mation about the outer objective, even when the
outer optimization variables are low-dimensional.
We believe that implicit bias deserves as central
a role in the study of bilevel optimization as it
has attained in the study of single-level neural net
optimization.

1. Introduction
Bilevel optimization (BLO) problems consist of two nested
sub-problems, called the outer and inner problems, where
the outer problem must be solved subject to the optimality
of the inner problem. Let u ∈ U , w ∈ W denote the outer
and inner parameters, and let F, f : U ×W → R denote the
outer and inner objectives, respectively. The BLO problem
is defined as:

u⋆ ∈ “ argmin
u∈U

”F (u,w⋆) (1)

w⋆ ∈ S(u⋆) = argmin
w∈W

f(u⋆,w) , (2)
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where S : U ⇒W is a set-valued response mapping, from
each outer parameter u to a set of optimal inner parame-
ters S(u). We use quotes around the outer “argmin” to
denote the ambiguity in the definition of the bilevel prob-
lem when the inner objective has multiple solutions, a point
we expand upon in Section 2. Examples of bilevel opti-
mization in machine learning include hyperparameter opti-
mization (Domke, 2012; Maclaurin et al., 2015; MacKay
et al., 2019; Lorraine et al., 2020; Shaban et al., 2019),
dataset distillation (Wang et al., 2018; Zhao et al., 2021),
influence function estimation (Koh & Liang, 2017), meta-
learning (Finn et al., 2017; Franceschi et al., 2018; Ra-
jeswaran et al., 2019), example reweighting (Bengio et al.,
2009; Ren et al., 2018), neural architecture search (Zoph &
Le, 2017; Liu et al., 2019) and adversarial learning (Good-
fellow et al., 2014; Pfau & Vinyals, 2016) (see Table 1).

Most algorithmic contributions to BLO make the simplify-
ing assumption that the inner problem has a unique solution
(that is, |S(u)| = 1,∀u ∈ U ), and give approximation meth-
ods that provably get close to the solution (Shaban et al.,
2019; Pedregosa, 2016; Yang et al., 2021; Hong et al., 2020;
Grazzi et al., 2020a). In practice, however, these algorithms
are often run in settings where either the inner or outer
problem is underspecified; i.e., the set of optima forms
a non-trivial manifold. Underspecification often occurs
due to overparameterization, e.g., given a learning problem
with more parameters than datapoints, there are typically
infinitely many solutions that achieve the optimal objective
value (Belkin, 2021). Analyses of the dynamics of overpa-
rameterized single-objective optimization have shown that
the nature of the converged solution, such as its pattern
of generalization, depends in subtle ways on the details of
the optimization dynamics (Lee et al., 2019; Arora et al.,
2019; Bartlett et al., 2020; Amari et al., 2020); this general
phenomenon is known as implicit bias. We extend this inves-
tigation to the bilevel setting: What are the implicit biases
of practical BLO algorithms? What types of solutions do
they favor, and what are the implications for how the trained
models generalize?

We identify two sources of implicit bias in underspecified
BLO: 1) implicit bias resulting from the optimization al-
gorithm, either cold-start or warm-start BLO (described
below); and 2) implicit bias resulting from the hypergradi-
ent approximation. Classic literature on bilevel optimiza-
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Figure 1: Underspecification in BLO. (a) Simplified visualization of inner underspecification, yielding a manifold of optimal solutions
S(u) = argminw f(u,w) for each u (the slice f(·,u) is highlighted in blue). The orange region along the floor of the valley highlights
the set-valued best-response mapping. (b) The set-valued best-response for u,w ∈ R, where the shaded gray region contains values of w
that achieve equivalent performance on the inner objective. The green curve highlights the minimum-norm inner solutions for each u. (c)
Outer underspecification due to F mapping a range of inner parameters to the same value; or (d) from S(u) associating a range of outer
parameters with the same inner parameters.

Task Inner (w) Outer (u) InnerU OuterU

Data Distil. NN weights Synthetic data ✓ ✗
Data Aug. NN weights Aug params ✓ ✗

GANs Discriminator Generator ✓ ✓
Meta-Learn. NN weights NN weights ✓ ✓

NAS NN weights Architectures ✓ ✓
Hyperopt NN weights Hyperparams ✓ ✗
Example

reweighting NN weights Example weights ✓ ✓

Table 1: Inner and outer overparameterization in common
bilevel tasks. For each task, we reference whether the common
use-case includes inner/outer underspecification (InnerU/OuterU).

tion (Dempe, 2002) considers two ways to break ties be-
tween solutions in the set S(u): optimistic and pessimistic
equilibria (discussed in Section 2). However, as we will
show, neither describes the solutions obtained by the most
common BLO algorithms. We focus on two algorithms that
are relevant for practical machine learning, which we term
cold-start and warm-start BLO. Cold-start BLO (Maclaurin
et al., 2015; Metz et al., 2019; Micaelli & Storkey, 2020)
defines the inner solution w⋆ as the fixpoint of an update
rule, which captures the notion of running an optimization
algorithm to convergence. For each outer update, the inner
parameters are re-initialized to w0 and the inner optimiza-
tion is run from scratch. This is computationally expensive,
as it requires full unrolls of the inner optimization for each
outer step. Warm-start BLO is a tractable and widely-used
alternative (Luketina et al., 2016; MacKay et al., 2019; Lor-
raine et al., 2020; Tang et al., 2020) that alternates gradient
descent steps on the inner and outer parameters: in each
step of warm-start BLO, the inner parameters are optimized
from their current values, rather than the initialization w0.

In Section 3, we characterize solution concepts that capture
the behavior of the cold- and warm-start BLO algorithms
and show that, for quadratic inner and outer objectives,
cold-start BLO yields minimum-norm outer parameters. In
Section 4, we show that warm-start BLO induces an implicit
bias on the inner parameter iterates, regularizing the updates
to maintain proximity to previous solutions.

In addition to the BLO algorithm, another source of im-
plicit bias is the hypergradient approximation used. In Sec-
tions 3 and 4, we investigate the effect of using approximate
implicit differentiation to compute the hypergradient dF

du ,
where different approximations can lead to vastly different
outer solutions.

Inner Underspecification. Most bilevel tasks in machine
learning involve training a neural network in the inner level,
which typically yields an underspecified problem, as shown
in Table 1. Figure 1(a,b) illustrates set-valued response
mappings in underspecified BLO.

Outer Underspecification. Outer underspecification can
arise in two ways: 1) the mapping S(u) is a function (e.g.,
not set-valued) and maps a range of outer parameters to the
same inner parameter; or 2) the outer objective F maps a
range of inner parameters to the same objective value. These
two pathways are illustrated in Figure 1(c,d).

2. Background
In this section, we provide an overview of key concepts that
we build on.1

Hypergradient Approximation. We assume that F and
f are differentiable, and consider gradient-based BLO al-
gorithms, which require the hypergradient dF (u,w⋆)

du =

∂F (u,w⋆)
∂u +

(
dw⋆

du

)⊤
∂F (u,w⋆)

∂w⋆ . The main challenge to com-
puting the hypergradient lies in computing the response
Jacobian dw⋆

du , which captures how the converged inner
parameters depend on the outer parameters. Exactly com-
puting this Jacobian is often intractable for large-scale prob-
lems. The two most common approaches to approximate
it are: 1) iterative differentiation, which unrolls the inner
optimization to reach an approximate best-response (BR)
and backpropagates through the unrolled computation graph
to compute the approximate BR Jacobian (Domke, 2012;

1We provide a table of notation in Appendix A.
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Figure 2: Dataset distillation sketch illustrating four solution concepts for BLO: optimistic, pessimistic, cold-start, and warm-start.
We distill the dataset consisting of red and green points into two synthetic datapoints denoted by ✖ and ✖ (one per class). The learned
datapoints ✖ and ✖ are the outer parameters and the inner parameters correspond to a model (classifier) trained on these synthetic
datapoints. We assume an overparameterized inner model, which can fit the synthetic datapoints with many different decision boundaries.
All of the solutions here correctly classify the synthetic datapoints (and are thus valid solutions to the inner problem) but they differ
in their behavior on the original dataset. Optimistic: finds the decision boundary that correctly classifies all the original datapoints;
Pessimistic: finds the decision boundary that achieves the worst loss on the original datapoints—it correctly classifies the synthetic
datapoints but incorrectly classifies the original datapoints (note the flipped red/green shading on either side of the decision boundary);
Cold-start: finds the min-norm solution that correctly classifies the synthetic datapoints; Warm-start: yields a trajectory of synthetic
datapoints over time, which can allow for a model trained on two learned datapoints to fit the original data.

Maclaurin et al., 2015; Shaban et al., 2019); and 2) implicit
differentiation, which leverages the implicit function theo-
rem (IFT) to compute the BR Jacobian, assuming that the
inner parameters are at a stationary point of the inner ob-
jective (Larsen et al., 1996; Chen & Hagan, 1999; Bengio,
2000; Foo et al., 2008; Pedregosa, 2016; Lorraine et al.,
2020; Hataya et al., 2020b; Raghu et al., 2020). The IFT
states that, assuming uniqueness of the inner solution and
under certain regularity conditions, we can compute the

response Jacobian as ∂w⋆(u)
∂u =

(
∂2f

∂w∂w⊤

)−1
∂2f

∂w∂u . The
term inside the inverse is the Hessian of the inner objective.
This is typically intractable to store or invert directly (e.g.,
neural nets can easily have millions of parameters). Thus,
multiplication by the inverse Hessian is typically approx-
imated using an iterative linear solver, such as truncated
conjugate gradient (CG) (Pedregosa, 2016), GMRES (Blon-
del et al., 2021), or the Neumann series (Liao et al., 2018;
Lorraine et al., 2020). The (un-truncated) Neumann series
for an invertible Hessian ∂2f

∂w∂w⊤ is defined as:

(
∂2f

∂w∂w⊤

)−1

= α

∞∑
j=0

(
I− α

∂2f

∂w∂w⊤

)j

. (3)

This series is known to converge when the largest eigen-
value of I − α ∂2f

∂w∂w⊤ is < 1. In practice, the Neumann
series is typically truncated to the first K terms. Lorraine
et al. (2020) showed that differentiating through i steps
of unrolling starting from optimal inner parameters w⋆ is
equivalent to approximating the inverse Hessian with the
first i terms in the Neumann series, a result we review in
Appendix F. Approximate implicit differentiation can be
implemented with efficient Hessian-vector products using
modern autodiff libraries (Pearlmutter, 1994; Abadi et al.,
2015; Paszke et al., 2017; Bradbury et al., 2018). However,
when the inner problem is overparameterized, the Hessian

∂2f
∂w∂w⊤ is singular. In Section 3, we discuss how the K-
term truncated Neumann series approximates the inverse
of the damped Hessian (H + ϵI)−1, and we discuss the
implications of this approximation.

Optimistic and Pessimistic BLO. For scenarios where the
inner problem has multiple solutions, i.e., |S(u⋆)| > 1, two
solution concepts have been widely studied in the classical
BLO literature: the optimistic (Sinha et al., 2017; Dempe
et al., 2007; Dempe, 2002; Harker & Pang, 1988; Lignola &
Morgan, 1995; 2001; Outrata, 1993) and pessimistic (Sinha
et al., 2017; Dempe, 2002; Dempe et al., 2014; Loridan
& Morgan, 1996; Lucchetti et al., 1987; Wiesemann et al.,
2013; Liu et al., 2018; 2020) solutions.2 In optimistic BLO,
w⋆ ∈ S(u⋆) is chosen such that it leads to the best outer
objective value. In contrast, in pessimistic BLO, it is chosen
such that it leads to the worst outer objective value. The cor-
responding equilibria are defined below, with the differences
highlighted in purple and teal.

Definition 2.1. Let S : U ⇒W be the set-valued response
mapping S(u) = argminw∈W f(u,w). Then (u⋆,w⋆) is
an optimistic/pessimistic equilibrium if:

u⋆ ∈ argmin
u

F (u,w⋆) s.t.w⋆ ∈ argmin/max
w∈S(u⋆)

F (u⋆,w) .

Dataset Distillation. Given an original (typically large)
dataset, the task of dataset distillation (Maclaurin et al.,
2015; Wang et al., 2018; Lorraine et al., 2020) is to learn
a smaller synthetic dataset such that a model trained on
the synthetic data will generalize well to the original data.
In this problem, the inner parameters are the weights of a
model, and the outer parameters are the synthetic datapoints.
The inner objective is the loss of the inner model trained on
the synthetic datapoints, and the outer objective is the loss

2See Sinha et al. (2017) for a comprehensive review.
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of the inner model on the original dataset:

u⋆ ∈ “ argmin
u

”L(w⋆(u),Doriginal), (4)

w⋆(u) ∈ argmin
w

L(w,D(u)) . (5)

Here, L denotes a loss function, Doriginal denotes the dataset
we aim to distill, and D(u) denotes a synthetic dataset pa-
rameterized by u. We focus on dataset distillation through-
out this paper because the degree of inner and outer overpa-
rameterization can be modified by varying the number of
original versus synthetic datapoints. The solutions for this
task are also easy to visualize and interpret.

Visualizing Solution Concepts. Figure 2 illustrates four
different solution concepts for a toy 2D problem: the opti-
mistic and pessimistic solutions, as well as two new solu-
tion concepts—cold- and warm-start equilibria—defined in
Section 3. We consider dataset distillation for binary clas-
sification, with red and green datapoints representing the
two classes, and a sinusoidal ground-truth decision bound-
ary. We distill this dataset into two synthetic datapoints,
represented by ✖ and ✖. In each subplot, the blue curve
shows the decision boundary of the inner classifier, and the
background colors show which class is predicted on each
side of the decision boundary. See the caption of Figure 2
for a description of each solution concept on this task.

The optimistic solution can be tractable to compute (Mehra
& Hamm, 2019; Ji & Liang, 2021), while the pessimistic so-
lution is known to be less tractable (Sinha et al., 2017). From
Figure 2, however, it is unclear which one of these solution
concepts is most useful. For example, in hyperparameter
optimization, the optimistic and pessimistic solutions cor-
respond to choosing hyperparameters such that the inner
training loop achieves minimum or maximum performance
on the validation set, and it is unclear why this would be
beneficial. Most widely-used BLO algorithms do not aim to
find either of these solution concepts, which motivates our
study of the behavior of the algorithms used in practice.

3. Equilibrium Concepts
We aim to understand the behavior of two popular BLO
algorithms: cold-start (App. H, Algorithm 1) and warm-
start (App. H, Algorithm 2). A summary of the updates
for each algorithm is shown in Table 2. In this section, we
first define equilibrium notions that capture the solutions
found by warm-start and cold-start BLO. We then discuss
properties of these equilibria, in particular focusing on the
norms of the resulting inner and outer parameters. Finally,
we analyze the implicit bias induced by approximating the
hypergradient with the truncated Neumann series.

Method Inner Update

Full Cold-Start w⋆
k+1 = Ξ(∞)(uk+1,w0)

Full Warm-Start w⋆
k+1 = Ξ(∞)(uk+1,w

⋆
k)

Partial Warm-Start w⋆
k+1 = Ξ(T )(uk+1,w

⋆
k)

Table 2: Inner parameter updates for cold-start, full warm-start,
and partial warm-start BLO.

3.1. Cold-Start Equilibrium

Here, we introduce a solution concept that captures the be-
havior of cold-start BLO. We consider an iterative optimiza-
tion algorithm used to compute an approximate solution
to the inner objective. We denote a step of inner optimiza-
tion by wt+1 = Ξ(u,wt); for gradient descent, we have
Ξ(u,wt) = wt − α∇wf(u,wt). We denote K steps of
inner optimization from w0 by Ξ(K)(u,w0). Under certain
assumptions (e.g., that f has a unique finite root and that the
step size α for the update is chosen appropriately), repeated
application of Ξ will converge to a fixpoint. We denote the
fixpoint for an initialization w0 by Ξ(∞)(u,w0).

Definition 3.1. Let r(u,w) ≜ Ξ(∞)(u,w). Then (u⋆,w⋆)
is a cold-start equilibrium for an initialization w0 if:

u⋆ ∈ argmin
u

F (u,w⋆) s.t. w⋆ = r(u⋆,w0) .

In some cases, we can compute the fixpoint of the inner
optimization analytically. In particular, when f is quadratic,
the analytic solution minimizes the displacement from w0:
Ξ(∞)(u,w0) = argminw∈S(u) ∥w −w0∥22.

3.2. Warm-Start Equilibrium

Next, we introduce a solution concept intended to capture
the behavior of warm-start BLO. Warm-starting refers to
initializing the inner optimization from the inner parame-
ters obtained in the previous hypergradient computation.
One can consider two variants of warm-starting: (1) using
full inner optimization, that is, running the inner optimiza-
tion to convergence starting from wt to obtain the next
iterate wt+1; or (2) partial inner optimization, where we
approximate the solution to the inner problem via a few gra-
dient steps. Full warm-start can be expressed as computing
wk+1 = Ξ(∞)(u,wk) in each iteration, starting from the
previous inner solution wk rather than w0. Similarly, par-
tial warm-start can be expressed as wk+1 = Ξ(T )(u,wk),
where T is often small (e.g., T < 10).

Definition 3.2. Let r(u,w) ≜ Ξ(T )(u,w). Then (u⋆,w⋆)
is a (full or partial) warm-start equilibrium if:

u⋆ ∈ argmin
u

F (u,w⋆) s.t. w⋆ = r(u⋆,w⋆) .

For finite T , the solution is a partial warm-start equilibrium.
As T →∞, we obtain the full warm-start equilibrium.
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3.3. Solution Properties

In this section, we examine properties of cold-start and
warm-start equilibria—in particular, we analyze the norms
of the inner and outer parameters given by different methods.
First, we show that cold-start equilibria (with exact hyper-
gradient computation) yield “simple” solutions for both the
inner and outer problems: when F and f are quadratic,
cold-start yields minimum-norm parameters at both levels.
Then, we analyze the implicit bias induced by the hyper-
gradient approximation, in particular by using the truncated
Neumann series to estimate the inverse Hessian for implicit
differentiation. To make the analysis tractable, we make the
following assumption:
Assumption 3.1 (Quadratic Objectives). We assume that
both the inner and outer objectives, f and F , are convex
lower-bounded quadratics. We let:

f(u,w) =
1

2

[
w⊤ u⊤] [ A B

B⊤ C

] [
w
u

]
+ d⊤w + e⊤u+ c ,

where A ∈ R|W|×|W| is positive semi-definite, B ∈
R|W|×|U|, C ∈ R|U|×|U|. The positive-definite assumption
implies that f is a convex quadratic for a fixed u . For the
outer objective, we restrict our analysis to the case where
F only depends directly on w (corresponding to a pure re-
sponse BLO problem, which encompasses many common
applications including hyperparameter optimization):

F (u,w) =
1

2
w⊤Pw + f⊤w + h ,

where P ∈ R|W|×|W| is positive semi-definite.

Note that the inner objective is a convex (but not strongly-
convex) quadratic, which may have many global minima.
The inner objective includes, for example, an overparameter-
ized linear regression problem with data matrix Φ ∈ Rn×p,
which is a quadratic with curvature matrix Φ⊤Φ. When
the number of parameters is greater than training examples
(p > n), Φ⊤Φ is PSD. In this case, f has a manifold of
valid solutions (Wu & Xu, 2020).
Statement 3.1 (Cold-start BLO converges to a cold-start
equilibrium.). Suppose f and F satisfy Assumption 3.1. If
the inner parameters are initialized to w0 and learning rates
are set appropriately to guarantee convergence, then the
cold-start algorithm (Algorithm 1) using exact hypergradi-
ents converges to a cold-start equilibrium.

Proof. The proof is provided in Appendix D.1.

Implicit Bias of Cold-Start for Inner Solutions. Because
cold-start BLO trains the inner parameters from initializa-
tion to convergence for each outer iteration, the inner solu-
tion inherits properties from the single-level optimization

literature. For example, in linear regression trained with
gradient descent, the inner solution will minimize displace-
ment from the initialization ∥w −w0∥22. Recent work aims
to generalize such statements to other model classes and
optimization algorithms – e.g., obtaining min-norm solu-
tions with algorithm-specific norms (Gunasekar et al., 2018).
Generalizing the results for various types of neural nets is
an active research area (Vardi & Shamir, 2021).

Implicit Bias of Cold-Start for Outer Solutions. In the
following theorem, we show that cold-start BLO with exact
hypergradients, from outer initialization u0, converges to
the outer solution u⋆ that minimizes displacement from u0.

Theorem 3.1 (Min-Norm Outer Parameters). Consider
cold-start BLO (Algorithm 1) with exact hypergradients
starting from outer initialization u0. Assume that for each
outer iteration, the inner parameters are re-initialized to
w0 = 0 and optimized with an appropriate learning rate
that ensures convergence. Then cold-start BLO converges
to an outer solution u⋆ with minimum L2 distance from u0:

u⋆ = argmin
u∈argminu F⋆(u)

∥u− u0∥2 . (6)

Proof. The proof is provided in Appendix D.2.

Next, we observe that for strongly-convex inner problems,
full warm-start and cold-start algorithms are equivalent.

Remark 3.2 (Equivalence of Full Warm-Start and Cold-
Start in the Strongly Convex Regime). When the inner prob-
lem f(u,w) is strongly convex in w for each u, then full
warm-start (Alg. 2) and cold-start (Alg. 1) are equivalent.

Proof. The proof is provided in Appendix D.3

We relate partial and full warm-start equilibria as follows.

Statement 3.2 (Inclusion of Partial Warm-Start Equilibria.).
Every partial warm-start equilibrium is a full warm-start
equilibrium. In addition, if Ξ(u,w) = w − α∇wf(u,w)
with a fixed (non-decayed) step size α, then full-warm start
equilibria are also partial warm-start equilibria.

Proof. The proof is provided in Appendix D.4.

3.3.1. IMPLICIT BIAS FROM HYPERGRAD APPROX.

Neumann Series. Next, we investigate the impact of the hy-
pergradient approximation on the converged outer solution.
In practice, we use the truncated Neumann series to esti-
mate the inverse Hessian. From the spectral regularization
literature (Gerfo et al., 2008; Rosasco, 2009), it is known
that the truncated Neumann series can be approximation by
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Figure 3: Eigenvalues of various matrix functions of H (denoted
H⋆ in the diagram): H−1, (H+ ϵI)−1, and the Neumann series
approximation α

∑K
j=0(I− αH)j . Here, ϵ = 1

αK
.

the regularized inverse:

α

K∑
j=0

(I− αH)j ≈ (H+ ϵI)−1 (7)

with ϵ = 1
αK . We show in Appendix E that the damped

Hessian inverse (H+ ϵI)−1 corresponds to the hypergradi-
ent of a proximally-regularized inner objective: f̂(u,w) =
f(u,w) + ϵ

2∥w − w′∥22, where w′ ∈ argminw f(u,w).
The damping prevents the inner optimization from moving
far in low-curvature directions. Consider the spectral de-
composition of the real symmetric matrix H = UDU⊤,
where D is a diagonal matrix containing the eigenvalues of
H, and U is an orthogonal matrix. Then, (H + ϵI)−1 =
(UDU⊤ + ϵI)−1 = U⊤(D + ϵI)−1U. If λ is an eigen-
value of H, then the corresponding eigenvalue of H−1 is
1
λ . In contrast, the corresponding eigenvalue of (H+ ϵI)−1

is 1
λ+ϵ . When ϵ ≪ λ, 1

λ+ϵ ≈ 1
λ ; when λ ≪ ϵ, 1

λ+ϵ ≈ 1
ϵ .

Thus, the influence of small eigenvalues (associated with
low-curvature directions) is diminished, and the truncated
Neumann series primarily takes into account high-curvature
directions. Figure 3 illustrates the relationship between the
eigenvalues of H−1, (H+ ϵI)−1, and α

∑K
j=0(I− αH)j .

Unrolling. The implicit bias induced by approximating the
hypergradient via K-step unrolled differentiation is quali-
tatively similar to the bias induced by the truncated Neu-
mann series. For quadratic inner objectives f , the truncated
Neumann series coincides with the result of differentiating
through K steps of unrolled gradient descent, because the
Hessian of a quadratic is constant over the inner optimiza-
tion trajectory. Note that gradient descent on a quadratic
converges (for step-size α ≤ 1/∥H∥2) more rapidly in high-
curvature directions than in low-curvature directions. Thus,
the approximate best response obtained by truncated un-
rolling only takes into account high-curvature directions of
the inner objective, and is less sensitive to low-curvature
directions. In turn, the response Jacobian will only capture
how the inner parameters depend on the outer parameters in
these high-curvature directions. Note that for general objec-
tives f (e.g., when training neural networks), differentiating

through unrolling only coincides with the Neumann series
when the inner parameters are at a stationary point of f .

4. Empirical Overparameterization Results
Many large-scale empirical studies—in particular in the ar-
eas of hyperparameter optimization and data augmentation—
use warm-start bilevel optimization (Hataya et al., 2020b;
Ho et al., 2019; Mounsaveng et al., 2021; Peng et al., 2018;
Tang et al., 2020). In this section, we introduce simple tasks
based on dataset distillation, designed to provide insights
into the phenomena at play. First, we show that when the
inner problem is overparameterized, the inner parameters w
can retain information associated with different settings of
the outer parameters over the course of joint optimization.
Then, we show that when the outer problem is overparam-
eterized, the choice of hypergradient approximation can
affect which outer solutions is found. Experimental details
and extended results are provided in Appendix G.

4.1. Inner Overparameterization: Dataset Distillation

In dataset distillation, the original dataset is only accessed
in the outer objective; thus, one might expect that the lower-
dimensional distilled dataset would act as an information
bottleneck between the objectives. Because the outer ob-
jective is only used directly to update the outer variables, it
would seem intuitive that all of the information about the
outer objective is compressed into the outer variables. While
this is correct for the cold-start equilibrium, we show that
it does not hold for the warm-start equilibrium: a surpris-
ingly large amount of information can leak from the original
dataset to the inner variables (e.g., network weights).

Consider a 2D binary classification task where the classes
form concentric rings (Figure 4). We aim to learn two
distilled datapoints (one per class) to model the circular
decision boundary. One may a priori expect that this would
not be possible when training a neural network on only
the two distilled points; indeed, we observe poor decision
boundaries for the original dataset when training a model
to convergence on the synthetic datapoints (Figure 4, Top
Right). However, when performing warm-start alternating
updates on the MLP parameters and the learned datapoints,
the datapoints follow a nontrivial trajectory, tracing out the
decision boundary between classes over time (Fig. 4, middle
three plots). The model trained jointly with the two learned
datapoints fits to the full trajectory of those datapoints. Thus,
warm-started BLO yields a model that achieves nearly the
same outer loss as one trained directly on the original data,
despite only using a single datapoint per class. See the
caption of Figure 4 for details on interpreting this result.

Warm-Start Memory. Here we provide intuition for the
warm-start behavior observed in Figure 4. In particular, we
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Figure 4: Dataset distillation for binary classification, with two learned datapoints (outer parameters) adapted jointly with the model
weights (inner parameters). Top left: The original data distribution we wish to distill; Top middle three plots: Visualizations of snapshots
during training with warm-start BLO, at iterations t ∈ {100, 1000, 7000} (indicated by the dashed vertical lines in the bottom plot). In
each middle figure, we show the new portion of the synthetic datapoint trajectory since the previous snapshot, shown by a curve with
arrows; Top right: Decision boundary when re-training to convergence on the final values of the two distilled datapoints yields a poor
solution for the original data. Bottom: We show the outer loss over the course of a single run of warm-start BLO corresponding to the
middle three plots in the top row. We also demonstrate that none of the intermediate synthetic datapoint pairs along the trajectory is
sufficient to fit the original data well, by re-training on each intermediate point (shown by the purple curve).
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Figure 5: Parameter-space view of warm-start with full inner
optimization, warm-start with partial inner optimization (denoted
the “online” setting, which most closely resembles what is done in
practice), and cold-start optimization.

discuss how warm-start BLO induces a memory effect.

Figure 5 illustrates warm- and cold-start algorithms on a toy
linear regression example where we can visualize the steps
of each algorithm in the inner parameter space. The solution
sets for four fixed values of a single synthetic datapoint are
shown by the solid black lines in Figure 5, and outer loss
contours are shown in the background.

We assume the inner parameters are initialized at the ori-
gin. Cold-start projects from the initialization onto the
solution set corresponding to the current outer parameter:
wk+1 = Π(0,S(uk)), where Π(·, C) denotes projection
onto the (convex) set C. In contrast, full warm-start projects
the previous inner parameters onto the current solution set:
wk+1 = Π(wk,S(uk)). If we cycle through the solution
sets repeatedly, full warm-start BLO is equivalent to the
Kaczmarz algorithm (Karczmarz, 1937), a classic alternat-
ing projection algorithm for finding a point in the intersec-

tion of the constraint sets (see App. C.2 for details). In
this case, the inner parameters will converge to the inter-
section of the solution sets {S(ui)}4i=1, in effect yielding
inner parameters that perform well for several outer parame-
ters simultaneously. In the case of dataset distillation, this
corresponds to model weights which fit all of the distilled
datapoints over the outer optimization trajectory.

Warm-Start vs Cold-Start in High-Dimensions. To illus-
trate the warm-start phenomena in high-dimensional prob-
lems, we ran a dataset distillation task on MNIST using a
linear classifier. Here, the BLO methods are provided with
a single 28× 28 image “canvas” whose pixels are learned
together with a 10-dimensional vector of soft labels. Fig-
ure 6a shows accuracies when optimizing a single synthetic
datapoint and its soft label on 10000 MNIST images. We
visualize the soft label evolution in Figures 6b and 6c, show-
ing classes 0-9 as colored regions. While the cold-start soft
label quickly converges, warm-start continues to adapt the
soft label over the course of joint optimization, effectively
training the inner model on all 10 classes (e.g., by placing
more weight on different classes at different points in time).
We obtained similar results on MNIST, FashionMNIST, and
CIFAR-10, with 1 or 10 synthetic datapoints (see Table
3). In addition to dataset distillation, we observe similar
phenomena in hyperparameter optimization. We trained
a linear data augmentation (DA) network that transforms
inputs before feeding them into a classifier; here, the DA
net parameters are hyperparameters u, tuned on the valida-
tion set. We used subsampled training sets consisting of 50
datapoints—so that data augmentation is beneficial—and
evaluated performance on the full validation set. Table 3
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Figure 6: Dataset distillation using a linear classifier on MNIST.

Dataset Distillation Data Aug. Net

Method MNIST CIFAR-10 MNIST CIFAR-10

Cold-Start 30.7 / 89.1 17.6 / 46.9 84.86 45.38
Warm-Start 90.8 / 97.5 50.3 / 59.8 92.81 59.30

Warm-Start +
Re-Train 12.9 / 17.1 10.2 / 8.9 9.15 11.12

Table 3: Cols 1-3: Accuracy on original data with 1 or 10 syn-
thetic samples. Cols 4-6: Learning a data augmentation network.

compares warm- and cold-start BLO on this task. Note that
in order to compare with cold-start solutions (which need
103–104 inner optimization steps) we require tractable inner
problems like linear models or MLPs.

Warm-Start Takeaways. Warm-start BLO yields outer pa-
rameters that fail to generalize under re-initialization of the
inner problem. In both toy and high-dimensional problems,
re-training with the final outer parameters (e.g., discard-
ing the outer optimization trajectory) yields a model that
performs poorly on the outer objective. In addition, warm-
start BLO leaks information about the outer objective to
the inner parameters, which can lead to overestimation of
performance. For example, when adapting a small number
of hyperparameters online, warm-start BLO may overfit the
validation set, yielding a model that fails to generalize to
the test set.

4.2. Outer Overparameterization: Anti-Distillation

Our previous discussion focused on implicit bias resulting
from the choice of cold- or warm-start BLO. Next, we show
that when the outer problem is overparameterized, the hy-
pergradient approximation we use can lead to different outer
solutions. We propose a task related to dataset distillation,
but where we have more learned datapoints than original
dataset examples, which we term anti-distillation (Figure 7).
Here, there are many valid ways to set the learned data-
points such that a model trained on those points achieves
good performance on the original data.

Anti-Distillation. Consider the linear regression prob-
lem f(u,w) = 1

2∥Φw − u∥22 where, for simplicity, u
parameterizes only the targets, not the inputs. The mini-

mum Frobenius norm best-response Jacobian is the Moore-
Penrose pseudoinverse of the feature matrix, Φ+ (see
Appendix C.1), which we will approximate in different
ways. For this problem, we have one original datapoint,
and we learn 13 synthetic datapoints (Figure 7). Any
solution that places one learned datapoint on top of the
original point perfectly fits the outer objective. We use
Fourier-basis regression with the feature function ϕ(x) =

a0 +
∑N

n=1

(
an2

N−n cos(nx) + bn2
N−n sin(nx)

)
, where

low frequency terms have larger magnitude than high fre-
quency terms—this yields an inductive bias for smooth func-
tions. Because of this difference in magnitude, the inner
optimizer can more easily (i.e., with a smaller-magnitude
weight update) fit the data by adjusting the regression co-
efficients on the low-frequency terms. Thus, the minimum-
norm solution found by gradient descent will explain as
much as possible using the low frequency terms.

When we estimate the best-response Jacobian with a few
of steps of unrolling, the inner optimizer will do its best
to fit the data using the low-frequency basis terms, which
correspond to high-curvature directions of the inner loss.

In Figure 7a, we show the solutions obtained for different
truncations of the Neumann series; because this problem is
quadratic, the K-step unrolled hypergradient coincides with
the K-step Neumann series hypergradient. To demonstrate
the relationship α

∑K
j=0(I−αH)j ≈ (H+ 1

αK I)−1 empir-
ically, we also show the distilled datasets obtained with the
proximal best-response Jacobian, for various damping fac-
tors ϵ ∈ {1e-5, 1e-6, 1e-7, 1e-8}, in Figure 10. We observe
similar behavior to the Neumann series. In Figure 7b we
plot the norms of the converged inner and outer parameters
for a range of Neumann truncation lengths K and damping
factors ϵ. We see that while the Neumann and proximal
approximate hypergradients behave similarly, they are not
equivalent. In Appendix G, Figure 13, we show similar
behavior when using an MLP rather than a linear model.

Figure 7c visualizes optimization trajectories in the outer
parameter space to provide additional intuition for the be-
havior of the outer parameter norms in Figure 7b. We con-
sider antidistillation with 1 original and 2 learned datapoints.
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Figure 7: Antidistillation task for linear regression with an overparametrized outer objective. We learn the y-component of 13
synthetic datapoints such that a regressor trained on those points will fit a single original dataset point, shown by the green dot at (0, 2).
Fig. (a) shows the learned datapoints (outer parameters) obtained via different truncated Neumann approximations to the hypergradient.
Fig. (b) shows the norms of the outer parameters ∥u∥2 as a function of K (for Neumann/unrolling) or ϵ (for proximal). We observe that
better hypergradient approximations (e.g., larger K or smaller ϵ) lead to smaller norm outer parameters, because they account for both
high- and low-curvature directions of the inner objective. Fig. (c) visualizes outer optimization trajectories in the outer parameter space, to
provide intuition for the behavior in (a) and (b). We consider antidistillation with 1 original datapoint and 2 learned datapoints. We show
the true hypergradient ∇uF , approximations using truncated Neumann series ∇̂uF , and the converged outer parameters for each setting,
e.g., ûK1

⋆ . We observe that: 1) when the outer problem is overparameterized, approximate hypergradients converge to valid solutions to
the outer objective; and 2) the exact hypergradient converges to the min-norm solution to the outer problem.

We use ∇̂K
u F (u,w) to denote the approximate hypergra-

dient obtained via implicit differentiation with the K-term
truncated Neumann series. We show the true hypergradi-
ent∇uF , approximations using truncated Neumann series
∇̂uF , and the converged outer parameters for each setting,
e.g., ûK1

⋆ . We observe that: 1) when the outer problem is
overparameterized, approximate hypergradients converge to
valid solutions in argminu F ⋆(u); and 2) the exact hyper-
gradient converges to the min-norm outer solution.

5. Related Work
Extended related work is provided in Appendix B.

Overparameterization. Overparameterization has long
been studied in single-level optimization, generating key
insights such as neural network behavior in the infinite-
width limit (Jacot et al., 2018; Sohl-Dickstein et al., 2020;
Lee et al., 2019), double descent phenomena (Nakkiran
et al., 2020; Belkin et al., 2019), the ability to fit random
labels (Zhang et al., 2016), and the inductive biases of opti-
mizers. However, prior work has not investigated implicit
bias in bilevel optimization. Implicit bias has a long history
in machine learning: many works have observed and studied
the connection between early stopping and L2 bias (Strand,
1974; Morgan & Bourlard, 1989; Friedman & Popescu,
2003; Yao et al., 2007). Interest in implicit bias has in-
creased over the past few years (Nacson et al., 2019; Soudry
et al., 2018; Suggala et al., 2018; Poggio et al., 2019; Ji &
Telgarsky, 2019; Ali et al., 2019; 2020).

Prior Work using Warm Start. Many papers perform joint
optimization of the inner and outer parameters (e.g., data
augmentations together with a base model), such as Hataya
et al. (2020a;b); Ho et al. (2019); Mounsaveng et al. (2021);

Peng et al. (2018); Tang et al. (2020). Ghadimi & Wang
(2018), Hong et al. (2020), and Ji et al. (2020) propose
bilevel optimization algorithms that use warm-starting; how-
ever, they focus on analyzing the convergence rates of their
algorithms and do not consider inner underspecification.

Gap Between Theory & Practice. Existing BLO theory
typically assumes unique solutions to the inner (and some-
times outer) problem, and focuses on showing that approxi-
mation methods get (provably) close to the solution. Shaban
et al. (2019) provide conditions where optimization with
an approximate hypergradient ĥ from truncated unrolling
converges to a BLO solution, but they assume uniqueness
of the inner solution. Grazzi et al. (2020a;b) study iteration
complexity and convergence of hypergradient approxima-
tions in the strongly-convex inner problem setting. Several
other works study BLO algorithms focusing on convergence
rate analyses (Ji et al., 2021; Yang et al., 2021; Ji & Liang,
2021).

6. Conclusion
Most work on bilevel optimization has made the simpli-
fying assumption that the solutions to the inner and outer
problems are unique. However, this does not hold in many
practical applications, such as hyperparameter optimization
for overparameterized neural networks. We investigated
overparameterized bilevel optimization, where either the
inner or outer problems may admit non-unique solutions.
We formalized warm- and cold-start equilibria, which corre-
spond to common BLO algorithms. We analyzed the proper-
ties of these equilibria, and algorithmic choices such as the
number of Neumann series terms used to approximate the
hypergradient. We presented several tasks illustrating that
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these choices can significantly affect the solutions obtained
in practice. More generally, we highlighted the importance
of, and laid groundwork for, analyzing the effects of overpa-
rameterization in nested optimization problems.
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Appendix
This appendix is structured as follows:

• In Section A, we provide an overview of the notation we use throughout the paper.

• In Section B, we provide an extended discussion of background and related work.

• In Section C, we provide derivations of formulas used in the main body.

• In Section D, we provide proofs of the theorems in the main paper.

• In Section F, we provide an overview of the result from Lorraine et al. (2020) that shows that differentiating through i
steps of unrolling starting from optimal inner parameters w⋆ is equivalent to approximating the inverse Hessian with
the first i terms of the Neumann series.

• In Section G, we provide experimental details and extended results, as well as a link to an animation of the bilevel
training dynamics for the dataset distillation task from Section 4.1.

https://docs.google.com/document/d/1whS9xmU_gfwsqtpUchf3ltlXSxcA_8iPoMwAfNqXNMs/edit?usp=sharing
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A. Notation

BLO Bilevel optimization

F Outer objective

f Inner objective

u Outer variables

w Inner variables

U Outer parameter space

W Inner parameter space

⇒ Multi-valued mapping between two sets

S(u) Set-valued response mapping for u: S(u) = argminw f(u,w)

Φ Design matrix, where each row corresponds to an example

|| · ||22 (Squared) Euclidean norm

|| · ||2F (Squared) Frobenius norm

A+ Moore-Penrose Pseudoinverse of A

A+k Shorthand for k-term Neumann series approximate inverse,
∑k

j=0(I− αA)j

A† Any matrix such that x = A†b is a solution to Ax = b

u⋆
k A fixpoint of the outer problem obtained via the k-step unrolled hypergradient

∇̂K10
u F Hypergradient approximation using K = 10 terms of the Neumann series

α Learning rate for inner optimization or step size for the Neumann series

β Learning rate for outer optimization

k Number of unrolling iterations / Neumann steps

F ⋆(u) F (u,w⋆) where w⋆ ∈ S(u)
w⋆ An inner solution, w⋆ ∈ S(u) = argminw f(u,w)

w0 An inner parameter initialization

N (A) Nullspace of A

PSD Positive semi-definite

Neumann series If (I−A) is contractive, then A−1 =
∑∞

j=0(I−A)j

Implicit Differentiation
Hypergradient

dF
du =

(
∂w⋆

∂u

)⊤ (
∂F (u,w⋆)

∂w

)
= −

(
∂2f(w⋆,u)
∂w∂w⊤

)−1 (
∂2f(w⋆,u)

∂u∂w

)(
∂F (u,w⋆

∂w

)
Optimize(f(·),uk,wk, α) Perform an optimization process on f with initialization uk,wk, and step-size α

HypergradApprox(u,w, T,K, α) Compute a hypergradient approximation at given inner and outer parameters
using K inner optimization steps with step-size α and K terms of the Neumann Series

Optimistic BLO u⋆ ∈ argminu F (u,w⋆) s.t. w⋆ ∈ argminw∈S(u⋆) F (u⋆,w)

Pessimistic BLO u⋆ ∈ argminu F (u,w⋆) s.t. w⋆ ∈ argmaxw∈S(u⋆) F (u⋆,w)

HO Hyperparameter optimization

NAS Neural architecture search

DD Dataset distillation

BR Best-response

IFT Implicit Function Theorem

Table 4: Summary of the notation and abbreviations used in this paper.
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B. Extended Related Work
Hyperparameter Optimization (HO). There are three main approaches for gradient-based HO: 1) differentiating through
unrolls of the inner problem, sometimes called iterative differentiation (Domke, 2012; Maclaurin et al., 2015; Shaban
et al., 2019); 2) using implicit differentiation to compute the response Jacobian assuming that the inner optimization
has converged (Larsen et al., 1996; Bengio, 2000; Foo et al., 2008; Pedregosa, 2016); and 3) using a hypernetwork (Ha
et al., 2017) to approximate the best-response function locally, ŵϕ(λ) ≈ w⋆(λ), such that the outer gradient can be
computed using the chain rule through the hypernetwork, ∂LV

∂λ = ∂LV

∂ŵϕ(λ)
∂ŵϕ(λ)

∂λ . Hypernetworks have been applied to HO
in (Lorraine & Duvenaud, 2017; MacKay et al., 2019; Bae & Grosse, 2020). MacKay et al. (2019) and Bae & Grosse
(2020) have observed that STNs learn online hyperparameter schedules (e.g., for dropout rates and augmentations) that
can outperform any fixed hyperparameter value. We believe that warm-start effects at least partially explain the observed
improvements from hyperparameter schedules.

Truncation Bias. We restrict our focus to bilevel problems in which the outer parameters affect the fixed points of the
inner problem—this includes dataset distillation and HO for most regularization hyperparameters, but not the optimization
hyperparameters such as the learning rate and momentum. Truncation bias has been shown to lead to critical failures when
used for tuning such hyperparameters (Wu et al., 2018; Metz et al., 2019). In contrast, greedy adaptation of regularization
hyperparameters has been successful empirically, via population-based training (Jaderberg et al., 2017), hypernetwork-based
HO (Lorraine & Duvenaud, 2017; MacKay et al., 2019; Bae & Grosse, 2020), and online implicit differentiation (Lorraine
et al., 2020; Hataya et al., 2020b).

Data Augmentation. A special case of hyperparameter optimization that has received widespread attention is automatic
data augmentation (Hataya et al., 2020b;a; Riba et al., 2020; Peng et al., 2018; Mounsaveng et al., 2021; Cheung & Yeung,
2021), where the aim is either to learn the strengths with which to apply different augmentations, or an augmentation network
that takes an input image and potentially a source of random noise, and outputs an augmented example (Lorraine et al., 2020;
Tang et al., 2020). The former approach typically involves tens to hundreds of outer parameters (the coefficients of pre-
specified augmentations), while the latter approach involves millions of outer parameters (the weights of the augmentation
network). The Population-Based Augmentation (PBA) algorithm (Ho et al., 2019) searches for augmentation schedules using
Population-Based Training (Jaderberg et al., 2017); the authors found that training with the PBA schedule outperformed
using the fixed final hyperparameters or training with a shuffled schedule (e.g., using the magnitudes of augmentations from
the schedule, but in a random order). Dataset distillation (Wang et al., 2018) can be thought of as a special case of data
augmentation, where the “augmentation” operation replaces an original dataset example with a learned, synthetic example.
Maclaurin et al. (2015) were among the first to consider learning a training dataset in a bilevel formulation. Recent work
has also looked at learning synthetic examples with soft labels, aiming to compress a dataset with N classes into M < N
synthetic examples (Sucholutsky & Schonlau, 2020).

Hysteresis. Luketina et al. (2016) are among the first we are aware of, who explicitly considered the effect of hysteresis
(e.g., path-dependence) on the model obtained via alternating optimization of the model parameters and hyperparameters.
The HO algorithm they introduce, dubbed T1-T2, uses the IFT with the identity matrix as an approximation to the inverse
Hessian (e.g., equivalent to using k = 0 terms of the Neumann series). Interestingly, in contrast to more recent HO papers
(particularly ones that focus on data augmentation), Luketina et al. (2016) found that re-training the model from scratch
performed better than the online model. One potential explanation for this is the choice of hyperparameters: Luketina et al.
(2016) adapted L2 coefficients and Gaussian noise added to inputs and activations, rather than augmentations.

C. Derivations
C.1. Minimum-Norm Response Jacobian

Suppose we have the following inner problem:

f(w,u) =
1

2
∥Φw − u∥22 .

The gradient, Hessian, and second-order mixed partial derivatives of f are:

∂f(w,u)

∂w
= Φ⊤Φw −Φ⊤u

∂2f(w,u)

∂w∂w⊤ = H = Φ⊤Φ
∂2f(w,u)

∂u∂w
= Φ⊤
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The minimum-norm response Jacobian is:

∂w⋆(u)

∂u
= argmin

HM=Φ
||M||2F (8)

We need a solution to the linear system HM = Φ. Assuming this system is satisfiable, the matrix Q = H+Φ is a solution
that satisfies ||Q||2F ≤ ||M||2F for any matrix M:

Q = H+Φ = (Φ⊤Φ)+Φ = (Φ⊤Φ)−1Φ = Φ+ (9)

Thus, the minimum-norm response Jacobian is the Moore-Penrose pseudoinverse of the feature matrix, Φ+.

C.2. Iterated Projection.

Alternating projections is a well-known algorithm for computing a point in the intersection of convex sets. Dijkstra’s
projection algorithm is a modified version which finds a specific point in the intersection of the convex sets, namely the
point obtained by projecting the initial iterate onto the intersection. Iterated algorithms for projection onto the intersection
of a set of convex sets are studied in (Stošić et al., 2016). Angelos et al. (1998) show that successive projections onto
hyperplanes can converge to limit cycles. Mishachev & Shmyrin (2019) study algorithms based on sequential projection
onto hyperplanes defined by equations of a linear system (like Kaczmarz), and show that with specifically-chosen systems
of equations, the limit polygon of such an algorithm can be any predefined polygon.

Closed-Form Projection Onto the Solution Set Here, we provide a derivation of the formula we use to compute the
analytic projections onto the solution sets given by different hyperparameters in Figure 5. This derivation is known in the
literature on the Kaczmarz algorithm (Karczmarz, 1937); we provide it here for clarity.

Consider homogeneous coordinates for the data x = [x, 1] such that we can write the weights as w = [w1, w2] and the
model as w⊤x = y. Given an initialization w0, we would like to find the point w⋆ such that:

w⋆ = arg min
{w|w⊤x=y}

1

2
||w −w0||2 (10)

To find the solution to this problem, we write the Lagrangian:

L(w, λ) =
1

2
||w −w0||2 + λ(w⊤x− y) (11)

The solution to this problem is the stationary point of the Lagrangian. Taking the gradient and equating its components to 0
gives:

∇wL(w, λ) = w −w0 + λx = 0 (12)

∇λL(w, λ) = w⊤x− y = 0 (13)

From the first equation, we have:
w = w0 − λx (14)

Plugging this into the second equation gives:

x⊤w − y = 0 (15)

x⊤(w0 − λx)− y = 0 (16)

x⊤w0 − λx⊤x− y = 0 (17)

λx⊤x = x⊤w0 − y (18)

λ =
x⊤w0 − y

x⊤x
(19)

Finally, plugging this expression for λ back into the equation w = w0 − λx, we have:

w = w0 −
x⊤w0 − y

x⊤x
x (20)
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D. Proofs
First, we prove a well-known result on the implicit bias of gradient descent used to optimize convex quadratic functions
(Lemma D.1), which we use in this section.

Lemma D.1 (Gradient Descent on a Quadratic Function Finds a Min-Norm Solution). Suppose we have a convex quadratic
function:

g(w) =
1

2
w⊤Aw + b⊤w + c , (21)

where A ∈ R|W|×|W| is symmetric positive semidefinite, b ∈ R|W|, and c ∈ R. If we start from initialization w0, then
gradient descent with an appropriate learning rate will converge to a solution w⋆ ∈ argminw g(w) which has minimum
L2 distance from w0:

w⋆ ∈ argmin
w∈argminw g(w)

1

2
∥w −w0∥22 . (22)

Proof. Note that∇wg(w) = Aw+b. By the lower-bounded assumption, the minimum of g is reached when∇wg(w) = 0;
one solution, which is the minimum-norm solution with respect to the origin, is w = −A+b, where A+ denotes the
Moore-Penrose pseudoinverse of A. The minimum-cost subspace is defined by:

argmin
w

g(w) = {w⋆ +w′ | w′ ∈ N (A)} , (23)

where w⋆ is any specific minimizer of g and N (A) denotes the nullspace of A. The closed-form solution for the minimizer
of g which minimizes the L2 distance from some initialization w0 is:

w⋆ = −A+b+ (I−A+A)w0 . (24)

Note that (I −A+A)w0 is in the nullspace of A, since A(I −A+A)w0 = Aw0 −AA+Aw0 = Aw0 −Aw0 = 0.
Next, we derive a closed-form expression for the result of k steps of gradient descent with a fixed learning rate α. We write
the recurrence:

wk+1 = wk − α∇wg(wk) (25)
= wk − α(Awk + b) (26)

We can subtract the optimum from both sides, yielding:

wk+1 +A+b = wk − α(Awk + b) +A+b (27)

= wk − αAwk − αb+A+b (28)

= wk − αAwk − αAA+b+A+b (29)

= (I− αA)wk +A+b− αAA+b (30)

= (I− αA)wk + (I− αA)A+b (31)

= (I− αA)(wk +A+b) (32)

Thus, to obtain wk+1 +A+b, we simply multiply wk +A+b by (I− αA). This allows us to write wk+1 as a function of
the initialization w0:

wk+1 +A+b = (I− αA)k(w0 +A+b) (33)

wk+1 = −A+b+ (I− αA)k(w0 +A+b) (34)

= −A+b+ (I− αA)k((I−A+A)w0 +A+Aw0 +A+b) (35)

= −A+b+ (I− αA)k((I−A+A)w0) + (I− αA)k(A+Aw0 +A+b) (36)

= −A+b+ (I−A+A)w0 , (37)

where the last equation follows from:

(I− αA)(I−A+A)w0 = (I− αA−A+A+ αAA+A)w0 = (I−A+A)w0 (38)
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and thus (I − αA)k(I − A+A)w0 = (I − A+A)w0, and the term ((I − A+A)w0) + (I − αA)k(A+Aw0 + A+b
goes to 0 as k →∞ because A+Aw0 and A+b are in the span of A. Gradient descent will converge for learning rates
α < 2λ−1

max, where λmax is the maximum eigenvalue of A. Thus, from Eq. 37 we see that gradient descent on the quadratic
converges to the solution which minimizes the L2 distance to the initialization w0.

We also prove the following Lemma D.2, which we use in Theorem 3.1.

Lemma D.2. Suppose f and F satisfy Assumption 3.1. Then, the function F ⋆(u) ≡ F (u,w⋆), where w⋆ is a solution to
the inner problem, is a convex quadratic in u with a positive semi-definite curvature matrix.

Proof. Any solution to the inner optimization problem for a given outer parameter u, argminw f(u,w), can be expressed
as:

w⋆ = −A+(Bu+ d) + c , (39)

where c is any element the kernel (or nullspace) of A and A+ is A’s pseudoinverse. Plugging this inner solution into the
outer objective F , we have:

F ⋆(u) ≡ F (w⋆) =
1

2
w⋆⊤Pw⋆ + f⊤w⋆ + h (40)

=
1

2

(
−A+Bu−A+d+ c

)⊤
P
(
−A+Bu−A+d+ c

)
+ f⊤(−A+Bu−A+d+ c) + h (41)

=
1

2
u⊤ B⊤A+PA+B︸ ︷︷ ︸

PSD

u+ u⊤(B⊤A+PA+d−B⊤A+f −B⊤A+Pc) (42)

+

(
1

2
d⊤A+PA+d− f⊤A+d− 1

2
d⊤A+Pc+

1

2
c⊤Pc+ f⊤c+ h

)
. (43)

The final equation is a quadratic form in u; we wish to show that the curvature matrix, B⊤A+PA+B, is positive semi-
definite. Note that A+PA+ is PSD because P is PSD by assumption, and thus for any vector v we have:

v⊤(A+PA+)v = v⊤(A+)⊤PA+v =
(
A+v

)⊤
P
(
A+v

)
≥ 0 . (44)

Next, because A+PA+ is a PSD matrix, it can be expressed in the form M⊤M for some PSD matrix M (e.g., the matrix
square root of A+PA+). Then, for any vector u, we have:

u⊤B⊤A+PA+Bu = u⊤B⊤M⊤MBu = (MBu)
⊤
(MBu) = ∥MBu∥22 ≥ 0 (45)

Thus, B⊤A+PA+B is PSD.

D.1. Proof of Statement 3.1

Statement D.1 (Cold-start BLO converges to a cold-start equilibrium.). Suppose f and F satisfy Assumption 3.1, and assume
we have inner parameter initialization w0. Then, given appropriate learning rates for the inner and outer optimizations, the
cold-start algorithm (Algorithm 1) using exact hypergradients converges to a cold-start equilibrium.

Proof. By assumption, the inner objective f is a convex quadratic in w for each fixed u, with positive semi-definite
curvature matrix A. By Lemma D.1, with an appropriately-chosen learning rate, the iterates of gradient descent in the
inner loop of Algorithm 1 converge to the solution with minimum L2 norm from the inner initialization w0: w⋆

k+1 =

argminw∈S(uk)
1
2∥w−w0∥2. Because w⋆

k+1 ∈ argminw f(w,uk) and assuming that we compute the exact hypergradient,
each outer step performs gradient descent on the objective F ⋆(u) ≡ F (u,w⋆). By Lemma D.2, the outer objective F ⋆(u) is
quadratic in u with a PSD curvature matrix, so that with an appropriate outer learning rate, the outer loop of Algorithm 1 will
converge to a solution of F ⋆(u). Thus, we will have a final iterate u⋆ ∈ argminu F (u,w⋆) for which the corresponding
inner solution is w⋆ ∈ argminw∈S(u⋆)

1
2∥w⋆ −w0∥2, yielding a pair of inner and outer parameters (u⋆,w⋆) that are a

cold-start equilibrium.
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D.2. Proof of Statement 3.1

Statement D.2 (Cold-Start Outer Parameter Norm.). Suppose f and F satisfy Assumption 3.1, and suppose we run cold-start
BLO (Algorithm 1) using the exact hypergradient, starting from outer parameter initialization u0. Assume that for each
outer iteration, the inner parameters are re-initialized to w0 = 0 and optimized with an appropriate learning rate to
convergence. Then cold-start BLO—with an appropriate learning rate for the outer optimization—converges to an outer
solution u⋆ with minimum L2 distance from u0:

u⋆ = argmin
u∈argminu F⋆(u)

1

2
∥u− u0∥2 (46)

Proof. Since the inner parameters are initialized at w0 = 0, the solution to the inner optimization problem found by gradient
descent for a given outer parameter u, argminw f(u,w), can be expressed in closed-form as:

w⋆ = −A+(Bu+ d) , (47)

where A+ denotes the Moore-Penrose pseudoinverse of A. Plugging this min-norm inner solution into the outer objective
F , we have:

F ⋆(u) ≡ F (w⋆) =
1

2
w⋆⊤Pw⋆ + f⊤w⋆ + h (48)

=
1

2
u⊤ B⊤A+PA+B︸ ︷︷ ︸

PSD

u+ u⊤(B⊤A+PA+d−B⊤A+f) +

(
1

2
d⊤A+PA+d− f⊤A+d+ h

)
(49)

Then F ⋆(u) is quadratic in u, and by Lemma D.2, the curvature matrix B⊤A+PA+B is positive semi-definite. Let
Z ≡ B⊤A+PA+B. Similarly to the analysis in Lemma D.1, the iterates uk of gradient descent with learning rate α are
given by:

uk = u⋆ + (I− αZ)k(u0 − u⋆) , (50)

where

u⋆ = argmin
u∈argminu F⋆(u)

1

2
∥u− u0∥2 . (51)

From Eq. (50), we see that the iterates of gradient descent converge exponentially to u⋆, which is the outer solution with
minimum L2 distance from the outer initialization u0.

D.3. Proof of Remark 3.2

Remark D.3 (Equivalence of Full Warm-Start and Cold-Start in the Strongly Convex Regime). When the inner problem
f(u,w) is strongly convex in w for each u, then the solution to the inner problem is unique. In this case, full warm-start
(Algorithm 2 with T →∞) and cold-start (Algorithm 1), using exact hypergradients, are equivalent.

Proof. If f(u,w) is strongly convex in w for each u, then it has a unique global minimum for each u. Thus, given an
appropriate learning rate for the inner optimization, repeated application of the update Ξ will converge to this unique solution
for any inner parameter initialization. That is, Ξ(∞)(u,winit) = argminw f(u,w) for any initialization winit ∈ W . In
particular, the fixpoint will be identical for cold-start and full warm-start, Ξ(∞)(u,w0) = Ξ(∞)(u,wk) for any w0 and wk.
Therefore, the inner solutions are identical, and yield identical hypergradients, so the iterates of the full warm-start and
cold-start algorithms are equivalent.

D.4. Proof of Statement 3.2

Statement D.3 (Inclusion of Partial Warm-Start Equilibria). Every partial warm-start equilibrium (with T = 1) is a full
warm-start equilibrium (T → ∞). In addition, if Ξ(u,w) = w − α∇wf(u,w) with a fixed (non-decayed) step size α,
then the corresponding full-warm start equilibria are also partial warm-start equilibria.
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Proof. Let (u⋆,w⋆) be an arbitrary partial warm-start equilibrium for T = 1. By definition, u⋆ ∈ argminu F (u,w⋆) and
w⋆ = Ξ(1)(u,w⋆). Thus, ∇wf(u,w) = 0, which entails that w⋆ = Ξ(∞)(u,w⋆). Hence, (u⋆,w⋆) is a full warm-start
equilibrium.

Next, let (u⋆,w⋆) be an arbitrary full warm-start equilibrium, that is w⋆ = Ξ(∞)(u⋆,w⋆). By the existence of the
limit w⋆ − Ξ(∞), we have that ∥wt − Ξt∥ = ∥α∇f(wt)∥ → 0. Since the step-size is non-vanishing, we must have
∥∇f(w⋆)∥ → 0 as t→∞, from where Ξ(1)(u⋆,w⋆) = w⋆, so (u⋆,w⋆) is a partial warm-start equilibrium.

E. Proximal Best-Response

Consider the proximal objective f̂(u,w) = f(u,w) + ϵ
2 ||w −w′||2. Here we will treat wk as a constant (e.g., we won’t

consider its dependence on u). Let w⋆(u) ∈ argminw f̂(u,w) be a fixed point of f̂ . We want to compute the response
Jacobian ∂w⋆(u)

∂u . Since w⋆ is a fixed point, we have:

∂f̂(u,w⋆(u))

∂w
= 0 (52)

∂f(u,w⋆(u))

∂w
+ ϵ(w⋆(u)−w′) = 0 (53)

∂

∂u

∂f(u,w⋆(u))

∂w
+ ϵ

∂w⋆(u)

∂u
= 0 (54)

∂2f(u,w⋆(u))

∂u∂w
+

∂2f

∂w∂w⊤
∂w⋆(u)

∂u
+ ϵ

∂w⋆(u)

∂u
= 0 (55)(

∂2f

∂w2
+ ϵI

)
∂w⋆(u)

∂u
= −∂2f(u,w⋆(u))

∂u∂w
(56)

∂w⋆

∂u
= −

(
∂2f

∂w∂w⊤ + ϵI

)−1
∂2f

∂u∂w
(57)

F. Equivalence Between Unrolling and Neumann Hypergradients
In this section, we review the result from (Lorraine et al., 2020), which shows that when we are at a converged solution to
the inner problem w⋆ ∈ S(u), then computing the hypergradient by differentiating through k steps of unrolled gradient
descent on the inner objective is equivalent to computing the hypergradient with the k-term truncated Neumann series
approximation to the inverse Hessian.

In this derivation, the inner and outer objectives are arbitrary—we do not need to assume that they are quadratic. The SGD
recurrence for unrolling the inner optimization is:

wi+1 = wi(u)− α
∂f(wi(u),u)

∂wi(u)
(58)

Then,

∂wi+1

∂u
=

∂wi(u)

∂u
− α

∂

∂wi(u)

(
∂f(wi(u),u)

∂wi(u)

∂wi(u)

∂u
+

∂f(wi(u),u)

∂u

)
(59)

=
∂wi(u)

∂u
− α

∂2f(wi(u),u)

∂wi(u)∂wi(u)

∂wi(u)

∂u
− α

∂2f(wi(u),u)

∂wi(u)∂u
(60)

= −α∂2f(wi(u),u)

∂wi(u)∂u
+

(
I− α

∂2f(wi(u),u)

∂wi(u)∂wi(u)

)
∂wi(u)

∂u
(61)

We can similarly expand out ∂wi(u)
∂u as:

∂wi(u)

∂u
= −α∂2f(wi−1(u),u)

∂wi−1∂u
+

(
I− α

∂2f(wi−1(u),u)

∂wi−1(u)∂wi−1(u)

)
∂wi−1(u)

∂u
(62)
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Plugging in this expression for ∂wi(u)
∂u into the expression for ∂wi+1(u)

∂u , we have:

∂wi+1(u)

∂u
= −α∂2f(wi(u),u)

∂wi(u)∂u
+

(
I− α

∂2f(wi(u),u)

∂wi(u)∂wi(u)

)
(63)

×
[
−α∂2f(wi−1(u),u)

∂wi−1(u)∂u
+

(
I− α

∂2f(wi−1(u),u)

∂ui−1(u)∂wi−1(u)

)
∂wi−1(u)

∂u

]
(64)

Expanding, we have:

∂wi+1(u)

∂u
= −α∂2f(wi(u),u)

∂wi(u)∂u
+

(
I− α

∂2f(wi(u),u)

∂wi(u)∂wi(u)

)(
−α∂2f(wi−1(u),u)

∂wi−1(u)∂u

)
(65)

+
∏
k<j

(
I− α

∂2f(w,u)

∂w∂w⊤

∣∣∣∣
u,wi−k(u)

)
∂wi−1(u)

∂u
(66)

Telescoping this sum, we have:

∂wi+1(u)

∂u
=
∑
j≤i

∏
k<j

(
I− α

∂2f(w,u)

∂w∂w⊤

∣∣∣∣
u,wi−k(u)

)(−α∂2f(u)

∂w∂u

∣∣∣∣
u,wi−j(u)

)
(67)

If we start unrolling from a stationary point of the proximal objective, then all the wi will be equal, so this simplifies to:

∂wi+1(u)

∂u
=

∑
j≤i

(
I− α

∂2f(w,u)

∂w∂w⊤

)j
(−α∂2f(w,u)

∂w∂u

)
(68)

This recovers the Neumann series approximation to the inverse Hessian.

G. Experimental Details and Extended Results
Compute Environment. All experiments were implemented using JAX (Bradbury et al., 2018), and were run on NVIDIA
P100 GPUs. Each instance of the dataset distillation and antidistillation task took approximately 5 minutes of compute on a
single GPU.

G.1. Details and Extended Results for Dataset Distillation.

Details. For our dataset distillation experiments, we trained a 4-layer MLP with 200 hidden units per layer and ReLU
activations. For warm-start joint optimization, we computed hypergradients by differentiating through K = 1 steps of
unrolling, and updated the hyperparameters (learned datapoints) and MLP parameters using alternating gradient descent,
with one step on each. We used SGD with learning rate 0.001 for the inner optimization and Adam with learning rate 0.01
for the outer optimization.

Link to Animations. Here is a link to an document containing animations of the bilevel training dynamics for the dataset
distillation task. We visualize the dynamics of warm-started bilevel optimization in the setting where the inner problem is
overparameterized, by animating the trajectories of the learned datapoints over time, and showing how the decision boundary
of the model changes over the course of joint optimization.

Extended Results. Here, we show additional dataset distillation results, using a similar setup to Section 4.1.

Figure 8 shows the results where we fit a three-class problem (e.g., three concentric rings) using three learned datapoints.
Figure 9 shows the results for fitting three classes using only two datapoints, where both the coordinates and soft labels are
learned. For each training datapoint, in addition to learning its x- an y-coordinates, we learn a C-dimensional vector (where
C is the number of classes, in this example C = 3) representing the unnormalized class label: this vector is normalized
with a softmax when we perform cross-entropy training of the inner model (e.g., we do not train on one-hot labels). Joint
adaptation of the model parameters and learned data is able to fit three classes by changing the learned class label for one of
the datapoints during training.

https://docs.google.com/document/d/1whS9xmU_gfwsqtpUchf3ltlXSxcA_8iPoMwAfNqXNMs/edit?usp=sharing
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Dataset Distillation Data Augmentation Net

Method MNIST Fashion C-10 MNIST Fashion C-10

Cold-Start 30.7 / 89.1 33.2 / 83.0 17.6 / 46.9 84.86 84.04 45.38
Warm-Start 90.8 / 97.5 88.2 / 94.2 50.3 / 59.8 92.81 89.51 59.30

Warm-Start +
Re-Train 12.9 / 17.1 7.0 / 12.6 10.2 / 8.9 9.15 25.32 11.12

Table 5: Cols 1-3: Accuracy on original data with 1/10 synthetic samples. Cols 4-6: Learning a data augmentation network.
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Figure 8: Dataset distillation results fitting three classes with three learned datapoints. Similarly to the results in Sec. 4.1,
when using warm-start joint optimization, the three learned datapoints are adapted during training to trace out the data in
their respective classes, guiding the network to learn a decision boundary that performs well on the original data. Cold-start
re-training yields a model that correctly classifies the three learned datapoints, but has poor validation performance.
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Figure 9: Dataset distillation results fitting three classes with only two learned datapoints. In the warm-start plot, the color of
the trajectory of each learned datapoint indicates its soft class membership, with magenta, green, and blue corresponding
to the inner, middle, and outer rings, respectively. Darker/gray colors indicate soft labels that place approximately equal
probability on each class. We see that although we only have two learned datapoints, the class labels change over the course
of training such that all three classes are covered. Cold-start re-training yields a model that correctly classifies the three
learned datapoints, but has poor validation performance.
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Figure 10: Antidistillation task for linear regression with an overparameterized outer objective. This plot uses the same setup as
Figure 7, but shows learned datapoints obtained via the proximal best-response Jacobian, for various damping factors ϵ.

G.2. Details and Extended Results for Anti-Distillation.

Details. For the anti-distillation results in Section 4.2, we used a Fourier basis consisting of 10 sin terms, 10 cos terms,
and a bias, yielding 21 total inner parameters. For the exponential-amplitude Fourier basis used in Section 4.2, we used
SGD with learning rates 1e-8 and 1e-2 for the inner and outer parameters, respectively; for the 1/n amplitude Fourier basis
(discussed below, and used for Figure 12), we used SGD with learning rates 1e-3 and 1e-2 for the inner and outer parameters,
respectively.

Approximate Hypergradient Visualization. For the visualization in Figure 7c, the experiment setup is as follows: we
have a single original dataset point at xy coordinate (1, 1), and we learn the y-coordinates of two synthetic datapoints, which
we initialize at xy-coordinates (0, 0) and (2, 0), respectively. The inner model trained on these two synthetic datapoints is a
linear regressor with one weight and one bias, e.g., y = wx+ b. The outer problem is overparameterized, because there are
many valid settings of the learned datapoints such that the inner model trained on those datapoints will fit the point (1, 1).
For example, three valid solutions for the learned datapoints are {(0, 0), (2, 2)}, {(0, 1), (2, 1)}, and {(0, 2), (2, 0)}. The
set of such valid solutions is visualized in Figure 7c, as well as the gradients using different hypergradient approximations,
outer optimization trajectories, and converged outer solutions with each approximation. We focused on Neumann series
approximations with different k, and ran the Neumann series at the converged inner parameters in each case.
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Figure 11: Truncated CG used to compute
hypergradients for the anti-distillation task.

Conjugate Gradient. Here, we present results using truncated conjugate
gradient to approximate the inverse Hessian vector product when using
the implicit function theorem to compute the hypergradient. We use the
same problem setup as in Section 4.2, where we have a single validation
datapoint and 13 learned datapoints. Because our Fourier basis consists of
10 sin terms, 10 cos terms, and a bias, we have 21 inner parameters, and
using 21 steps of CG is guaranteed to yield the true inverse-Hessian vector
product (barring any numerical issues). In Figure 11, we show the effect
of using truncated CG iterations on the learned datapoints: we found that
while Neumann iterations, truncated unrolling, and proximal optimization
all yield nearly identical results, CG produces a very different inductive
bias.

An Alternate Set of Fourier Basis Functions. In Section 4.2, we used a
Fourier basis in which the lower-frequency terms had exponentially larger
amplitudes than the high-frequency terms. Figure 12 presents results using an alternative feature function: ϕ(x) =

a0 +
∑N

n=1

(
an
(
1
n

)
cos(nx) + bn

(
1
n

)
sin(nx)

)
.

Using an MLP. Finally, we show that similar conclusions hold when training a multi-layer perceptron (MLP) on the anti-
distillation task. We used a 2-layer MLP with 10 hidden units per layer and ReLU activations. We used SGD with learning
rate 0.01 for both the inner and outer parameters. Figure 13 shows the learned datapoints and model fits resulting from
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Figure 12: Fourier-basis 1D linear regression, where the outer objective is overparameterized. We learn 13 synthetic
datapoints such that a regressor trained on those points will fit a single “validation” datapoint, shown by the green X at (0, 2).
The synthetic datapoints are initialized at linearly-spaced x-coordinates, with y-coordinate 0, and we only learn the targets y.
In the Fourier basis we use, lower frequency components have larger amplitudes. Here, we use the 1/n amplitude scheme.

running several different steps of Neumann iterations or unrolling, as well as the norms of the inner and outer parameters as
a function of K. For the Neumann experiments, we first optimize the MLP for 5000 steps to reach approximate convergence
of the inner problem, before running K Neumann iterations—the MLP is re-trained from scratch for 5000 steps for each
outer parameter update (e.g., cold-started).
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Figure 13: 1D linear regression with an overparameterized outer objective, where we train an MLP rather than performing
Fourier-basis function regression. Note that here we cannot analytically compute the proximal solution as in the linear
regression case, so we only include results for full-unrolls with truncated Neumann approximations of the inverse Hessian,
and alternating gradient descent with various numbers of unroll steps.
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Algorithm 1 Cold-Start BLO

1: Input: α: inner LR, β: outer LR
2: T : number of inner optimization steps
3: K: number of Neumann series terms
4: Initial guess w0,u0

5: for t = 0, 1, . . . do
6: if ||∇̂uF (ut,wt)||2 ≤ ε then

break
7: end if
8: ∇̂uF ← HypergradApprox(ut,w0, T,K, α)
9: ut+1 ← ut − β∇̂uF

10:
11: end for
12: return (ut,Optimize(ut,w0, T, α))

Algorithm 2 Warm-start BLO

1: Input: α: inner LR, β: outer LR
2: T : number of inner optimization steps
3: K: number of Neumann series terms
4: Initial guess w0,u0

5: for t = 0, 1, . . . do
6: if ||∇̂uF (ut,wt)||2 ≤ ε then

break
7: end if
8: ∇̂uF ← HypergradApprox(ut,wt, T,K, α)
9: ut+1 ← ut − β∇̂uF

10: wt+1 ← Optimize(ut+1,wt, T, α)
11: end for
12: return (ut,wt)

Figure 14: Algorithms for cold-start and warm-start bilevel optimization. We highlight the key differences in cyan for
cold-start and orange for warm-start.

Algorithm 3
NeumannHypergrad(ut,wt, T,K, α)

1: Input: α: inner LR, β: outer LR
2: T : inner steps
3: K: Neumann terms
4: ŵ⋆

T ← Optimize(ut,wt, T, α)

5: dŵ⋆
T

du ← BRJ-Approx(ŵ⋆
T ,ut,K, α)

6: ∇̂uF ← ∂F
∂u +

(
dŵ⋆

T

du

)⊤
∂F (u,ŵ⋆

T )
∂ŵ⋆

T

7: return ∇̂uF

Algorithm 4 Optimize(u,w0, T, α)

1: Input: α: learning rate
2: T : unroll steps
3: u: outer parameters
4: w0: inner parameters
5: for t = 1, . . . , T do
6: wt ← wt−1 − γ∇wf(u,wt−1)
7: end for
8: return wt

Algorithm 5
BRJ-Approx(u,w,K, α)

1: Input: α, learning rate
2: T , unroll steps
3: return

α
∑K

j=0

(
I − α∂2f(u,w)

∂w∂w⊤

)j

Figure 15: Helper functions to compute the implicit hypergradient using the Neumann series to approximate the inverse
inner loss Hessian.

H. Algorithms
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Algorithm 6 IterativeDiffHypergrad

1: Input: α: inner LR, β: outer LR
2: T : inner steps
3: ŵ⋆

T ← Optimize(ut,wt, T )

4: F̂ ← F (u, ŵ⋆
T )

5: Compute∇uF̂ using auto-diff.
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