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SECOND-ORDER REGRESSION MODELS EXHIBIT PROGRESSIVE SHARPENING TO THE EDGE OF STABILITY

Figure 2: For small ✏, two-eigenvalue model shows EOS behavior for various step sizes (✏ =
5 · 10�3, left). Trajectories are the same up to scaling because corresponding rescaled
coordinates z̃ and T (0) are the same at initialization. Plotting every other iterate, we see
that for a variety of initializations (black x’s), trajectories in z̃ � T (0) space stay near
the nullcline (z̃, fz̃(z̃)) - the curve where z̃t+2 � z̃t = 0 (middle). Changing variables to
y = T (0)� fz̃(z̃) shows quick concentration to a curve of near-constant, small, negative
y (right).

Theorem 1 There exists an ✏c > 0 such that
for a quadratic regression model with E = 0
and eigenvalues {�✏, 1}, ✏  ✏c. there exists
a neighborhood U ⇢ R2 and interval [⌘1, ⌘2]
such that for initial ✓ 2 U and learning rate
⌘ 2 [⌘1, ⌘2], the model displays edge-of-stability
behavior:

2/⌘ � ��  lim
t!1

�max  2/⌘ ,

for �� of O(✏).

Therefore, unlike the catapult phase model,
the small ✏ provably has EOS behavior - whose
mechanism is well-understood by the z̃ � y co-
ordinate transformation.

3. Quadratic regression model

3.1. General model

While the model defined in Equation 1 provable
displays edge-of-stability behavior, it required
tuning of the eigenvalues of Q to demonstrate
it. We can define a more general model which
exhibits edge-of-stability behavior with less tun-
ing. We define the quadratic regression model as

follows. Given a P -dimensional parameter vec-
tor ✓, the D-dimensional output vector z is given
by

z = y +G>✓ +
1

2
Q(✓,✓) . (18)

Here y is a D-dimensional vector, G is a D⇥P -
dimensional matrix, and Q is a D ⇥ P ⇥ P - di-
mensional tensor symmetric in the last two in-
dices - that is, Q(·, ·) takes two P -dimensional
vectors as input, and outputs a D-dimensional
vector verifying Q(✓,✓)↵ = ✓>Q↵✓. If Q = 0,
the model corresponds to linearized learning (as
in the NTK regime). When Q 6= 0, we obtain
the first correction to NTK regime. We note that:

G↵i =
@z↵
@✓i

����
✓=0

, Q↵ij =
@2z↵
@✓i@✓j

,! J = G+Q(✓, ·) ,

(19)
for the D ⇥ P dimensional Jacobian J. For
D = 1, we recover the model of Equation 1. In
the remainder of this section, we will study the
limit as D and P increase with fixed ratio D/P .

The quadratic regression model corresponds
to a model with a constant second derivative
with respect to parameter changes - or a sec-
ond order expansion of a more complicated ML
model. Quadratic expansions of shallow MLPs
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Figure 1: Quartic loss landscape L(·) as a function of the parameters ✓, where D = 2, E = 0 and
Q has eigenvalues 1 and �0.1. The GD trajectories (initialized at (1.5,�4.32), marked
with an x) converge to minima with larger curvature than at initialization and therefore
show progressive sharpening (left). The two-step dynamics, in which we consider only
even iteration numbers, exhibit fewer oscillations near the edge of stability (right).

2.2. Gradient descent

We are interested in understanding the edge-of-stability (EOS) behavior in this model: gradient
descent (GD) trajectories where the maximum eigenvalue of the NTK, JJ>, remains close to the
critical value 2/⌘. We define edge of stability with respect to the maximum NTK eigenvalue instead
of the maximum loss Hessian eigenvalue from [3]. We will prove this form of EOS in our simpler
models, and find that it holds empirically in more complex models. See Appendix A.1 for further
discussion.

When Q has both positive and negative eigenvalues, the loss landscape is the square of a hy-
perbolic parabaloid (Figure 1, left). As suggested by the gradient flow analysis, this causes some
trajectories to increase their curvature before convergence. This causes the final curvature to depend
on both the initialization and learning rate. One of the challenges in analyzing the gradient descent
(GD) dynamics is that they rapidly and heavily oscillate around minima for large learning rates.
One way to mitigate this issue is to consider only every other step (Figure 1, right). We will use this
observation to analyze the gradient descent (GD) dynamics directly to find configurations where
these trajectories show edge-of-stability behavior.

In the eigenbasis coordinates, the gradient descent equations are

z̃t+1 � z̃t = �z̃t

PX

i=1

J̃(!i)
2
t +

1

2
(z̃2t )

PX

i=1

!iJ̃(!i)
2
t (5)

J̃(!i)
2
t+1 � J̃(!i)

2
t = �z̃t!i(2� z̃t!i)J̃(!i)

2
t for all 1  i  P . (6)

We’ll find it convenient in the following to write the dynamics in terms of weighted averages of
J̃(!i)2 instead of the modes J̃(!i):

T (↵) =
PX

i=1

!↵
i J̃(!i)

2 . (7)
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ABSTRACT

We empirically demonstrate that full-batch gradient descent on neural network
training objectives typically operates in a regime we call the Edge of Stability.
In this regime, the maximum eigenvalue of the training loss Hessian hovers just
above the value 2/(step size), and the training loss behaves non-monotonically
over short timescales, yet consistently decreases over long timescales. Since this
behavior is inconsistent with several widespread presumptions in the field of op-
timization, our findings raise questions as to whether these presumptions are rel-
evant to neural network training. We hope that our findings will inspire future
efforts aimed at rigorously understanding optimization at the Edge of Stability.

1 INTRODUCTION

Neural networks are almost never trained using (full-batch) gradient descent, even though gradient
descent is the conceptual basis for popular optimization algorithms such as SGD. In this paper, we
train neural networks using gradient descent, and find two surprises. First, while little is known
about the dynamics of neural network training in general, we find that in the special case of gradient
descent, there is a simple characterization that holds across a broad range of network architectures
and tasks. Second, this characterization is strongly at odds with prevailing beliefs in optimization.

In more detail, as we train neural networks using gradient descent with step size ⌘, we measure the
evolution of the sharpness — the maximum eigenvalue of the training loss Hessian. Empirically,
the behavior of the sharpness is consistent across architectures and tasks: so long as the sharpness
is less than the value 2/⌘, it tends to continually rise (§3.1). We call this phenomenon progressive

sharpening. The significance of the value 2/⌘ is that gradient descent on quadratic objectives is
unstable if the sharpness exceeds this threshold (§2). Indeed, in neural network training, if the
sharpness ever crosses 2/⌘, gradient descent quickly becomes destabilized — that is, the iterates
start to oscillate with ever-increasing magnitude along the direction of greatest curvature. Yet once

Figure 1: Gradient descent typically occurs at the Edge of Stability. On three separate architec-
tures, we run gradient descent at a range of step sizes ⌘, and plot both the train loss (top row) and the
sharpness (bottom row). For each step size ⌘, observe that the sharpness rises to 2/⌘ (marked by the
horizontal dashed line of the appropriate color) and then hovers right at, or just above, this value.
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Prior work (Cohen et al. 2021) has shown 
tendency of many deep architectures to 

1. Sharpness (largest Hessian eigenvalue) 
increases throughout optimisation 

2. Eventually sharpness hovers around 2 / 
step-size

Implications for Optimization
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1. No global bound on L-smoothness (aka 
sharpness), depends on step-size. 

2. Quadratic objectives don’t exhibit these 
dynamic = not a good model 

3. What is driving the optimization to not 
diverge?

A Second-order Model
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L(✓) = (f(✓)� E)2

We propose a tractable model that exhibits 
progressive sharpening. In its simplest form 
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f(✓) = ✓>Q✓where                                ,                               

• Can be seen as quadratic regression with a 
quadratic predictive model, one datapoint  

• Unlike NTK,    is quadratic in  
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✓

This objective has multiple solutions with 
different degrees of sharpness

Analysis — key insights

Quadratic Model Exhibits 
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Figure 2: For small ✏, two-eigenvalue model shows EOS behavior for various step sizes (✏ =
5 · 10�3, left). Trajectories are the same up to scaling because corresponding rescaled
coordinates z̃ and T (0) are the same at initialization. Plotting every other iterate, we see
that for a variety of initializations (black x’s), trajectories in z̃ � T (0) space stay near
the nullcline (z̃, fz̃(z̃)) - the curve where z̃t+2 � z̃t = 0 (middle). Changing variables to
y = T (0)� fz̃(z̃) shows quick concentration to a curve of near-constant, small, negative
y (right).

Theorem 1 There exists an ✏c > 0 such that
for a quadratic regression model with E = 0
and eigenvalues {�✏, 1}, ✏  ✏c. there exists
a neighborhood U ⇢ R2 and interval [⌘1, ⌘2]
such that for initial ✓ 2 U and learning rate
⌘ 2 [⌘1, ⌘2], the model displays edge-of-stability
behavior:

2/⌘ � ��  lim
t!1

�max  2/⌘ ,

for �� of O(✏).

Therefore, unlike the catapult phase model,
the small ✏ provably has EOS behavior - whose
mechanism is well-understood by the z̃ � y co-
ordinate transformation.

3. Quadratic regression model
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While the model defined in Equation 1 provable
displays edge-of-stability behavior, it required
tuning of the eigenvalues of Q to demonstrate
it. We can define a more general model which
exhibits edge-of-stability behavior with less tun-
ing. We define the quadratic regression model as

follows. Given a P -dimensional parameter vec-
tor ✓, the D-dimensional output vector z is given
by

z = y +G>✓ +
1

2
Q(✓,✓) . (18)

Here y is a D-dimensional vector, G is a D⇥P -
dimensional matrix, and Q is a D ⇥ P ⇥ P - di-
mensional tensor symmetric in the last two in-
dices - that is, Q(·, ·) takes two P -dimensional
vectors as input, and outputs a D-dimensional
vector verifying Q(✓,✓)↵ = ✓>Q↵✓. If Q = 0,
the model corresponds to linearized learning (as
in the NTK regime). When Q 6= 0, we obtain
the first correction to NTK regime. We note that:

G↵i =
@z↵
@✓i

����
✓=0

, Q↵ij =
@2z↵
@✓i@✓j

,! J = G+Q(✓, ·) ,

(19)
for the D ⇥ P dimensional Jacobian J. For
D = 1, we recover the model of Equation 1. In
the remainder of this section, we will study the
limit as D and P increase with fixed ratio D/P .

The quadratic regression model corresponds
to a model with a constant second derivative
with respect to parameter changes - or a sec-
ond order expansion of a more complicated ML
model. Quadratic expansions of shallow MLPs
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1. Derive recurrence for output             
Instead of parameters.  

2. Write recurrence for every other iteration 
— removes oscillations. 

3. Study dynamical system as                        
, i.e., as model converges to solution. 

4. Analysis is performed on empirical NTK, 
not Hessian

Connection with Deep Models

When                                                 , 
with                   then we observe 
progressive sharpening 
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follows from the analysis of gradient descent on linear least squares (i.e., linear model) with a large
step size �. For every coordinate ✓̃, the one-step and two-step dynamics are

✓̃t+1 � ✓̃t = ��✓̃t and ✓̃t+2 � ✓̃t = (1� �)2✓̃t (GD in quadratic potential) . (14)

While the dynamics converge for � < 2, if � > 1 the one-step dynamics oscillate when approaching
minimum, whereas the the two-step dynamics maintain the sign of ✓̃ and the trajectories exhibit no
oscillations.

Likewise, plotting every other iterate in the two parameter model more clearly demonstrates the
phenomenology. For small ✏, the dynamics shows the distinct phases described in [13]: an initial
increase in T (0), a slow increase in z̃, then a decrease in T (0), and finally a slow decrease of z̃
while T (0) remains near 2 (Figure 2, middle).

Unfortunately, the two-step version of the dynamics defined by Equations 12 and 13 are more
complicated – they are 3rd order in T (0) and 9th order in z̃; see Appendix B.2 for a more detailed
discussion. However we can still analyze the dynamics as z̃ goes to 0. In order to understand the
mechanisms of the EOS behavior, it is useful to understand the nullclines of the two step dynamics.
The nullcline fz̃(z̃) of z̃ and fT (z̃) of T (0) are defined implicitly by

(z̃t+2 � z̃t)(z̃, fz̃(z̃)) = 0, (Tt+2(0)� Tt(0))(z̃, fT (z̃)) = 0 (15)

where z̃t+2� z̃t and Tt+2(0)�Tt(0) are the aforementioned high order polynomials in z̃ and T (0).
Since these polynomials are cubic in T (0), there are three possible solutions as z̃ goes to 0. We are
particularly interested in the solution that goes through z̃ = 0, T (0) = 2 - that is, the critical point
corresponding to EOS.

Calculations detailed in Appendix B.2 show that the distance between the two nullclines is linear
in ✏, so they become close as ✏ goes to 0. (Figure 2, middle). In addition, the trajectories stay near
fz̃ - which gives rise to EOS behavior. This suggests that the dynamics are slow near the nullclines,
and trajectories appear to be approaching an attractor. We can find the structure of the attractor by
changing variables to yt ⌘ Tt(0) � fz̃(z̃t) - the distance from the z̃ nullcline. To lowest order in z̃
and y, the two-step dynamical equations become (Appendix B.3):

z̃t+2 � z̃t = 2ytz̃t +O(y2t z̃t) +O(ytz̃
2
t ) (16)

yt+2 � yt = �2(4� 3✏+ 4✏2)ytz̃
2
t � 4✏z̃2t + ✏O(z̃3t ) +O(y2z̃2t ) (17)

We immediately see that z̃ changes slowly for small y - since we chose coordinates where z̃t+2 �
z̃t = 0 when y = 0. We can also see that yt+2�yt is O(✏) for yt = 0 - so for small ✏, the y dynamics
is slow too. Moreover, we see that the coefficient of the ✏z̃2t term is negative - the changes in z̃ tend
to drive y (and therefore T (0)) to decrease. The coefficient of the yt term is negative as well; the
dynamics of y tends to be contractive. The key is that the contractive behavior takes y to an O(✏)
fixed point at a rate proportional to z̃2, while the dynamics of z̃ are proportional to ✏. This suggests
a separation of timescales if z̃2 � ✏, where y first equilibrates to a fixed value, and then z̃ converges
to 0 (Figure 2, right). This intuition for the lowest order terms can be formalized, and gives us a
prediction of limt!1 yt = �✏/2, confirmed numerically in the full model (Appendix B.5).

We can prove the following theorem about the long-time dynamics of z̃ and y when the higher
order terms are included (Appendix B.4):
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Figure 2: For small ✏, two-eigenvalue model shows EOS behavior for various step sizes (✏ =
5 · 10�3, left). Trajectories are the same up to scaling because corresponding rescaled
coordinates z̃ and T (0) are the same at initialization. Plotting every other iterate, we see
that for a variety of initializations (black x’s), trajectories in z̃ � T (0) space stay near
the nullcline (z̃, fz̃(z̃)) - the curve where z̃t+2 � z̃t = 0 (middle). Changing variables to
y = T (0)� fz̃(z̃) shows quick concentration to a curve of near-constant, small, negative
y (right).

Theorem 1 There exists an ✏c > 0 such that
for a quadratic regression model with E = 0
and eigenvalues {�✏, 1}, ✏  ✏c. there exists
a neighborhood U ⇢ R2 and interval [⌘1, ⌘2]
such that for initial ✓ 2 U and learning rate
⌘ 2 [⌘1, ⌘2], the model displays edge-of-stability
behavior:

2/⌘ � ��  lim
t!1

�max  2/⌘ ,

for �� of O(✏).

Therefore, unlike the catapult phase model,
the small ✏ provably has EOS behavior - whose
mechanism is well-understood by the z̃ � y co-
ordinate transformation.

3. Quadratic regression model

3.1. General model

While the model defined in Equation 1 provable
displays edge-of-stability behavior, it required
tuning of the eigenvalues of Q to demonstrate
it. We can define a more general model which
exhibits edge-of-stability behavior with less tun-
ing. We define the quadratic regression model as

follows. Given a P -dimensional parameter vec-
tor ✓, the D-dimensional output vector z is given
by

z = y +G>✓ +
1

2
Q(✓,✓) . (18)

Here y is a D-dimensional vector, G is a D⇥P -
dimensional matrix, and Q is a D ⇥ P ⇥ P - di-
mensional tensor symmetric in the last two in-
dices - that is, Q(·, ·) takes two P -dimensional
vectors as input, and outputs a D-dimensional
vector verifying Q(✓,✓)↵ = ✓>Q↵✓. If Q = 0,
the model corresponds to linearized learning (as
in the NTK regime). When Q 6= 0, we obtain
the first correction to NTK regime. We note that:

G↵i =
@z↵
@✓i

����
✓=0

, Q↵ij =
@2z↵
@✓i@✓j

,! J = G+Q(✓, ·) ,

(19)
for the D ⇥ P dimensional Jacobian J. For
D = 1, we recover the model of Equation 1. In
the remainder of this section, we will study the
limit as D and P increase with fixed ratio D/P .

The quadratic regression model corresponds
to a model with a constant second derivative
with respect to parameter changes - or a sec-
ond order expansion of a more complicated ML
model. Quadratic expansions of shallow MLPs
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have been previously studied [1, 20], and the per-
turbation theory for small Q is studied in [16].
Other related models are detailed in Appendix
A. We will provide evidence that even random,
unstructured quadratic regression models lead to
EOS behavior.

3.2. Gradient flow dynamics

We will focus on training with squared loss
L(z) = 1

2

P
↵ z

2
↵. We begin by considering the

dynamics under gradient flow (GF):

✓̇ = �@L(z)
@✓

= �J>z . (20)

We can write the dynamics in the output space z
and the Jacobian J as

ż = J✓̇ = �JJ>z, J̇ = �Q(J>z, ·) (21)

When Q = 0 (linearized/NTK regime), J is con-
stant, the dynamics are then linear in z, and are
controlled by the eigenstructure of JJ>, the em-
pirical NTK. In this regime there is no EOS be-
havior.

We are interested in settings where progres-
sive sharpening occurs under GF. We can study
the dynamics of the maximum eigenvalue �max

of JJ> at early times for random initializations.
In Appendix C.1, we prove the following theo-
rem:

Theorem 2 Let z, J, and Q be initialized with
i.i.d. elements with zero mean and variances
�2
z , �2

J , and 1 respectively, with distributions in-
variant to rotation in data and parameter space,
and have finite fourth moments. Let �max be the
largest eigenvalue of JJ>. In the limit of large
D and P , with fixed ratio D/P , at initialization
we have

E[�̇max(0)] = 0, E[�̈max(0)]/E[�max(0)] = �2
z

(22)
where E denotes the expectation over z, J, and
Q at initialization.

Much like in the D = 1 case, Theorem 2 sug-
gests that it is easy to find initializations that
show progressive sharpening - and increasing �z
makes sharpening more prominent.

3.3. Gradient descent dynamics

We now consider finite-step size gradient de-
scent (GD) dynamics. The dynamics for ✓ are
given by:

✓t+1 = ✓t � ⌘J>
t zt . (23)

In this setting, the dynamic equations can be
written as

zt+1 � zt = �⌘JtJ
>
t zt +

1

2
⌘2Q(J>

t zt,J
>
t zt)

(24)
Jt+1 � Jt = �⌘Q(J>

t zt, ·) . (25)

If Q = 0, the dynamics reduce to discrete gradi-
ent descent in a quadratic potential - which con-
verges iff �max < 2/⌘.

One immediate question is: when does the
⌘2 in Equation 24 affect the dynamics? Given
that it scales with higher powers of ⌘ and z than
the first term, we can conjecture that the ratio
of the magnitudes of the terms, rNL, is propor-
tional to ||z||2 and ⌘. A calculation in Appendix
C.2 shows that, for random rotationally invariant
initializations, we have:

rNL ⌘
 
E[||12⌘

2Q(J>
0 z0,J

>
0 z0)||22]

E[||⌘J0J>
0 z0||22]

!1/2

=
1

2
⌘�zD ,

(26)
where as before the expectation is taken over the
initialization of z, J, and Q. This suggests that
increasing the learning rate increases the devi-
ation of the dynamics from GF (which is obvi-
ous), but increasing ||z|| also increases the devi-
ation from GF.

We can see this phenomenology in the dy-
namics of the GD equations (Figure 3). Here we
plot different trajectories for random initializa-
tions of the type in Theorem 2 with D = 60,
P = 120, and ⌘ = 1. As �z increases, so
does the curvature �max (as suggested by The-
orem 2), and when �z is O(1), the dynamics is
non-linear (as predicted by rNL) and EOS be-
havior emerges. This suggests that the second
term in Equation 24 is crucial for the stabiliza-
tion of �max.
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Figure 2: For small ✏, two-eigenvalue model shows EOS behavior for various step sizes (✏ =
5 · 10�3, left). Trajectories are the same up to scaling because corresponding rescaled
coordinates z̃ and T (0) are the same at initialization. Plotting every other iterate, we see
that for a variety of initializations (black x’s), trajectories in z̃ � T (0) space stay near
the nullcline (z̃, fz̃(z̃)) - the curve where z̃t+2 � z̃t = 0 (middle). Changing variables to
y = T (0)� fz̃(z̃) shows quick concentration to a curve of near-constant, small, negative
y (right).

Theorem 1 There exists an ✏c > 0 such that
for a quadratic regression model with E = 0
and eigenvalues {�✏, 1}, ✏  ✏c. there exists
a neighborhood U ⇢ R2 and interval [⌘1, ⌘2]
such that for initial ✓ 2 U and learning rate
⌘ 2 [⌘1, ⌘2], the model displays edge-of-stability
behavior:

2/⌘ � ��  lim
t!1

�max  2/⌘ ,

for �� of O(✏).

Therefore, unlike the catapult phase model,
the small ✏ provably has EOS behavior - whose
mechanism is well-understood by the z̃ � y co-
ordinate transformation.

3. Quadratic regression model

3.1. General model

While the model defined in Equation 1 provable
displays edge-of-stability behavior, it required
tuning of the eigenvalues of Q to demonstrate
it. We can define a more general model which
exhibits edge-of-stability behavior with less tun-
ing. We define the quadratic regression model as

follows. Given a P -dimensional parameter vec-
tor ✓, the D-dimensional output vector z is given
by

z = y +G>✓ +
1

2
Q(✓,✓) . (18)

Here y is a D-dimensional vector, G is a D⇥P -
dimensional matrix, and Q is a D ⇥ P ⇥ P - di-
mensional tensor symmetric in the last two in-
dices - that is, Q(·, ·) takes two P -dimensional
vectors as input, and outputs a D-dimensional
vector verifying Q(✓,✓)↵ = ✓>Q↵✓. If Q = 0,
the model corresponds to linearized learning (as
in the NTK regime). When Q 6= 0, we obtain
the first correction to NTK regime. We note that:

G↵i =
@z↵
@✓i

����
✓=0

, Q↵ij =
@2z↵
@✓i@✓j

,! J = G+Q(✓, ·) ,

(19)
for the D ⇥ P dimensional Jacobian J. For
D = 1, we recover the model of Equation 1. In
the remainder of this section, we will study the
limit as D and P increase with fixed ratio D/P .

The quadratic regression model corresponds
to a model with a constant second derivative
with respect to parameter changes - or a sec-
ond order expansion of a more complicated ML
model. Quadratic expansions of shallow MLPs
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Figure 4: �̃z/�̃2
J phase planes for quadratic regression models, for various D and P . Models were

initialized with 100 random seeds for each �̃z , �̃J pair and iterated until convergence. For
each pair �̃z, �̃2

J we plot the median �max of the NTK J>J. For intermediate �̃z , where
both sharpening and non-linear z dynamics occur, trajectories tend to converge so �max

of the NTK is near 2/⌘ (EOS).

largest eigenvalue of JJ>, and its corresponding eigenvector v1 using a Lanczos method [6, 15].
We use v1 to compute z1 = v>

1 z, where z is the vector of residuals f(X,✓)�Y for neural network
function f , training inputs X, labels Y, and parameters ✓. The EOS behavior in the NTK is similar
to the EOS behavior defined with respect to the full Hessian in [3] (Figure 5, left and right). Once
again, plotting the trajectories at every other step gets rid of the high frequency oscillations (Figure
5, middle). Unlike the D = 1, P = 2 model, there are multiple crossings of the critical line
�max = 2/⌘ line.

Figure 5: A FCN trained on CIFAR shows multiple cycles of sharpening and edge-of-stability be-
havior. z1, the projection of the training set residuals f(X,✓) � Y onto the top NTK
eigenmode v1, increases in magnitude and oscillates around 0 (left). Plotting dynamics
every two steps removes high frequency oscillations (middle). The largest eigenvalue �1

crosses the edge of stability multiple times, but the second largest eigenvalue �2 remains
below the edge of stability.

There is evidence that low-dimensional features of a quadratic regression model could be used
to explain some aspects of EOS behavior. We empirically compute the the second derivative of the
output f(x,✓) by automatic differentiation. We denote by Q(·, ·) the resulting tensor. We can use
matrix-vector products to compute the spectrum of the matrix Q1 ⌘ v1 ·Q(·, ·), which is projection
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Progressive Sharpening

Provably at initialization:

Empirically upon convergence:

Sharpness at convergence is close, but not 
exactly 2/step-size

We trained 2-hidden-layer tank network 
on CIFAR10
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of the output of Q in the v1 direction, without instantiating Q in memory (Figure 6, left). This figure
reveals that the spectrum does not shift much from step 3200 to 3900 (the range of our plots). This
suggests that Q doesn’t change much as these EOS dynamics are displayed. We can also see that Q
is much larger in the v1 direction than a random direction.

Let y be defined as y = �1⌘ � 2. Plotting the two-step dynamics of z1 versus 2yz we see a
remarkable agreement (Figure 6, middle). This is the same form that the dynamics of z̃ takes in
our simplified model. It can also be found by iterating Equation 24 twice with fixed Jacobian for
y = �1⌘ � 2 and discarding terms higher order in ⌘. This suggests that during this particular EOS
behavior, much like in our simplified model the dynamics of the eigenvalue is more important than
any rotation in the eigenbasis.

The dynamics of y is more complicated; yt+2 � yt is anticorrelated with z21 but there is no
low-order functional form in terms of y and z1 (Appendix D.1). We can get some insight into
the stabilization by plotting the ratio of ⌘2Q1(Jz1v1,Jz1v1) (the non-linear contribution to the
z1 dynamics from the v1 direction) and �1z1 (the linearized contribution), and compare it to the
dynamics of y (Figure 6, right). The ratio is small during the initial sharpening, but becomes O(1)
shortly before the curvature decreases for the first time. It remains O(1) through the rest of the
dynamics. This suggests that the non-linear feedback from the dynamics of the top eigenmode onto
itself is crucial to understanding the EOS dynamics.

Figure 6: Q is approximately constant during edge-of-stability dynamics for FCN trained on CI-
FAR10 (left). Projection onto largest eigendirection v1 (blue and orange) is larger than
projection onto random direction (green). Two step difference (z1)t+2 � (z1)t is well ap-
proximated by 2z1y (middle), leading order term of models with fixed eigenbasis. Non-
linear dynamical contribution ⌘2Q1(Jz1v1,Jz1v1) is small during sharpening, but be-
comes large immediately preceding decrease in top eigenvalue (right) - as is the case in
the simple model.

5. Discussion

5.1. Lessons learned from quadratic regression models

The main lesson to be learned from the quadratic regression models is that behavior like progressive
sharpening (for both GF and GD) and edge-of-stability behavior (for GD) may be common features
of high-dimensional gradient-based training of non-linear models. Indeed, these phenomena can
be revealed in simple settings without any connection to deep learning models: with mild tuning
our simplified model, which corresponds to 1 datapoint and 2 parameters can provably show EOS
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Figure 4: �̃z/�̃2
J phase planes for quadratic regression models, for various D and P . Models were

initialized with 100 random seeds for each �̃z , �̃J pair and iterated until convergence. For
each pair �̃z, �̃2

J we plot the median �max of the NTK J>J. For intermediate �̃z , where
both sharpening and non-linear z dynamics occur, trajectories tend to converge so �max

of the NTK is near 2/⌘ (EOS).

largest eigenvalue of JJ>, and its corresponding eigenvector v1 using a Lanczos method [6, 15].
We use v1 to compute z1 = v>

1 z, where z is the vector of residuals f(X,✓)�Y for neural network
function f , training inputs X, labels Y, and parameters ✓. The EOS behavior in the NTK is similar
to the EOS behavior defined with respect to the full Hessian in [3] (Figure 5, left and right). Once
again, plotting the trajectories at every other step gets rid of the high frequency oscillations (Figure
5, middle). Unlike the D = 1, P = 2 model, there are multiple crossings of the critical line
�max = 2/⌘ line.

Figure 5: A FCN trained on CIFAR shows multiple cycles of sharpening and edge-of-stability be-
havior. z1, the projection of the training set residuals f(X,✓) � Y onto the top NTK
eigenmode v1, increases in magnitude and oscillates around 0 (left). Plotting dynamics
every two steps removes high frequency oscillations (middle). The largest eigenvalue �1

crosses the edge of stability multiple times, but the second largest eigenvalue �2 remains
below the edge of stability.

There is evidence that low-dimensional features of a quadratic regression model could be used
to explain some aspects of EOS behavior. We empirically compute the the second derivative of the
output f(x,✓) by automatic differentiation. We denote by Q(·, ·) the resulting tensor. We can use
matrix-vector products to compute the spectrum of the matrix Q1 ⌘ v1 ·Q(·, ·), which is projection

9

Top: Largest eigenvalue crosses edge of stability 
multiple times, second largest remains below. 

Below: Non-linear dynamical contribution (green) 
is small during sharpening but becomes large 
preceding decrease in top eigenvalue 


