Householder matrices
Householder matrices are square matrices of the form
$$ P = I - \beta v v^T$$
where $\beta$ is a scalar and $v$ is …
Householder matrices are square matrices of the form
$$ P = I - \beta v v^T$$
where $\beta$ is a scalar and $v$ is …
Ridge coefficients for multiple values of the regularization parameter can be elegantly computed by updating the thin SVD decomposition of the design matrix:
import numpy as np
from scipy import linalg
def ridge(A, b, alphas):
"""
Return coefficients for regularized least squares
min ||A x - b||^2 + alpha ||x||^2 …
Update: a fast and stable norm was added to scipy.linalg in August 2011 and will be available in scipy 0.10 Last week I discussed with Gael how we should compute the euclidean norm of a vector a using SciPy. Two approaches suggest themselves, either calling scipy.linalg.norm …