fa.bianp.net

Lightning v0.1

Category: misc
#Python #scikit-learn #machine learning #lightning

Announce: first public release of lightning!, a library for large-scale linear classification, regression and ranking in Python. The library was started a couple of years ago by Mathieu Blondel who also contributed the vast majority of source code. I joined recently its development and decided it was about time for …

scikit-learn-contrib, an umbrella for scikit-learn related projects.

Category: misc
#Python #scikit-learn #machine learning #lightning

Together with other scikit-learn developers we've created an umbrella organization for scikit-learn-related projects named scikit-learn-contrib. The idea is for this organization to host projects that are deemed too specific or too experimental to be included in the scikit-learn codebase but still offer an API which is compatible with scikit-learn and …

SAGA algorithm in the lightning library

Category: misc
#Python #scikit-learn #machine learning #lightning

Recently I've implemented, together with Arnaud Rachez, the SAGA[1] algorithm in the lightning machine learning library (which by the way, has been recently moved to the new scikit-learn-contrib project). The lightning library uses the same API as scikit-learn but is particularly adapted to online learning. As for the SAGA …

Holdout cross-validation generator

Category: misc
#Python #scikit-learn #machine learning #model selection

Cross-validation iterators in scikit-learn are simply generator objects, that is, Python objects that implement the __iter__ method and that for each call to this method return (or more precisely, yield) the indices or a boolean mask for the train and test set. Hence, implementing new cross-validation iterators that behave as …

Isotonic Regression

Category: misc
#isotonic regression #machine learning #Python #scikit-learn

My latest contribution for scikit-learn is an implementation of the isotonic regression model that I coded with Nelle Varoquaux and Alexandre Gramfort …

Learning to rank with scikit-learn: the pairwise transform

Category: misc
#python #scikit-learn #ranking

This tutorial introduces the concept of pairwise preference used in most ranking problems. I'll use scikit-learn and for learning and matplotlib for …

scikit-learn EuroScipy 2011 coding sprint -- day one

Category: misc
#scikit-learn #python

As a warm-up for the upcoming EuroScipy-conference, some of the scikit-learn developers decided to gather and work together for a couple of days. Today was the first day and there was only a handfull of us, as the real kickoff is expected tomorrow. Some interesting coding happened, although most of …

Ridge regression path

Category: misc
#scikit-learn #scipy #linear algebra

Ridge coefficients for multiple values of the regularization parameter can be elegantly computed by updating the thin SVD decomposition of the design matrix:

import numpy as np
from scipy import linalg
def ridge(A, b, alphas):
    """
    Return coefficients for regularized least squares

         min ||A x - b||^2 + alpha ||x||^2 …

LARS algorithm

Category: misc
#scikit-learn #sparse

I've been working lately with Alexandre Gramfort coding the LARS algorithm in scikits.learn. This algorithm computes the solution to several general linear models used in machine learning: LAR, Lasso, Elasticnet and Forward Stagewise. Unlike the implementation by coordinate descent, the LARS algorithm gives the full coefficient path along the …